YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计

极市平台

共 2184字,需浏览 5分钟

 ·

2021-08-10 10:42

↑ 点击蓝字 关注极市平台

作者丨ChaucerG
来源丨集智书童
编辑丨极市平台

极市导读

 

本文提出了一种新的目标检测模型 YOffleNet,该模型在压缩率高的同时,将精度损失降到最小,可用于自动驾驶系统上的实时安全驾驶应用。该模型的Backbone架构是基于YOLOv4实现,但是可以用ShuffleNet的轻量级模块代替CSP的高计算负荷的DenseNet,从而大大压缩网络。 >>加入极市CV技术交流群,走在计算机视觉的最前沿

论文链接:https://arxiv.org/pdf/2108.00392.pdf

1 简介

最新的基于CNN的目标检测模型相当精确,但需要高性能GPU实时运行。对于内存空间有限的嵌入式系统来说,它们在内存大小和速度方面依旧不是很好。

由于目标检测是在嵌入式处理器上进行的,因此在保证检测精度的同时,最好尽可能地压缩检测网络。有几个流行的轻量级检测模型,但它们的准确性太低。因此,本文提出了一种新的目标检测模型 YOffleNet,该模型在压缩率高的同时,将精度损失降到最小,可用于自动驾驶系统上的实时安全驾驶应用。该模型的Backbone架构是基于YOLOv4实现,但是可以用ShuffleNet的轻量级模块代替CSP的高计算负荷的DenseNet,从而大大压缩网络。

在KITTI数据集上的实验表明,提出的YOffleNet比YOLOv4-s压缩了4.7倍,在嵌入式GPU系统(NVIDIA Jetson AGX Xavier)上可以达到46FPS的速度。与高压缩比相比,精度略有降低,为85.8% mAP,仅比YOLOv4-s低2.6%。因此,提出的网络具有很高的潜力部署在嵌入式系统。

2 YOLO V4简述

在YOLOv4的主干网络CSPDarknet-53中,CSP将特征卷积一定次数后复制使用与前一层特征cat起来,然后利用DenseNet模块。

在Neck中,输入特征图有3种大小。SPP最大池化后concat技术提高了各种尺寸输入的准确性。此外,它通过自底向上的路径增强技术平滑特征。

YOLOv4引入PANet以促进信息流和它弥补了权重带来的精度损失问题。

YOLO v4的Head依旧采用YOLOv3的物体检测方法。

3 YOLO V4轻量化设计

YOffleNetYOLOv4中使用的主要模块是下图中的CSP DenseNet;此外为了防止初始特征图中的信息丢失的问题,作者还设计了PANet结构,其是通过自下而上的路径增强特征表达的。它促进信息的流动的同时也增加了特征图中的通道数、增加参数的数量,这也是YOffleNet模型为它改进了上述YOLOv4模型的缺点。

CSP DenseNet

改进点 1

主干层CSP DenseNet是一种随着深度增加而不可避免地增加计算量的结构。在本研究中,主干网络层被配置为ShuffleNet模块。

ShuffleNet模块

改进点 2

YOLOv4网络中使用的SPP+PANet结构简化和减轻模型的大小。现有YOLOv4模型的PANet从主干网络分为3层作为输入的。然而,常见对象检测情况与自动驾驶环境不同,有限类别中的物体检测(汽车、行人等,更小的目标也就少了)。

基于这个原因,改进PANet可以接收来自backbone网络的只有2层的输入。Upsample, Downsample层的位置和数量变少了。计算量相对也就减少了。

4 实验

没啥好评价的,确实变快了,但是这个改进确实有点。。。。你懂的!!!

参考

[1].Developing a Compressed Object Detection Model based on YOLOv4 for Deployment on Embedded GPU Platform of Autonomous System

如果觉得有用,就请分享到朋友圈吧!

△点击卡片关注极市平台,获取最新CV干货

公众号后台回复“CVPR21检测”获取CVPR2021目标检测论文下载~


极市干货
深度学习环境搭建:如何配置一台深度学习工作站?
实操教程:OpenVINO2021.4+YOLOX目标检测模型测试部署为什么你的显卡利用率总是0%?
算法技巧(trick):图像分类算法优化技巧21个深度学习调参的实用技巧


CV技术社群邀请函 #

△长按添加极市小助手
添加极市小助手微信(ID : cvmart4)

备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳)


即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群


每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~



觉得有用麻烦给个在看啦~  
浏览 84
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报