19 种损失函数的 PyTorch 写法!

共 4467字,需浏览 9分钟

 ·

2022-06-13 05:44


“他山之石,可以攻玉”,站在巨人的肩膀才能看得更高,走得更远。在科研的道路上,更需借助东风才能更快前行。为此,我们特别搜集整理了一些实用的代码链接,数据集,软件,编程技巧等,开辟“他山之石”专栏,助你乘风破浪,一路奋勇向前,敬请关注。

来源:CSDN—mingo_敏
地址:https://blog.csdn.net/shanglianlm/article/details/85019768


01


基本用法
criterion = LossCriterion() #构造函数有自己的参数loss = criterion(x, y) #调用标准时也有参数



02


损失函数


2-1 L1范数损失 L1Loss

计算 output 和 target 之差的绝对值。


torch.nn.L1Loss(reduction='mean')


参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。

2-2 均方误差损失 MSELoss

计算 output 和 target 之差的均方差。


torch.nn.MSELoss(reduction='mean')


参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。

2-3 交叉熵损失 CrossEntropyLoss

当训练有 C 个类别的分类问题时很有效. 可选参数 weight 必须是一个1维 Tensor, 权重将被分配给各个类别. 对于不平衡的训练集非常有效。

在多分类任务中,经常采用 softmax 激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。所以需要 softmax激活函数将一个向量进行“归一化”成概率分布的形式,再采用交叉熵损失函数计算 loss。


torch.nn.CrossEntropyLoss(weight=None, ignore_index=-100, reduction='mean')


参数:

weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor

ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度。

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。

2-4 KL 散度损失 KLDivLoss

计算 input 和 target 之间的 KL 散度。KL 散度可用于衡量不同的连续分布之间的距离, 在连续的输出分布的空间上(离散采样)上进行直接回归时很有效.


torch.nn.KLDivLoss(reduction='mean')


参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。

2-5 二进制交叉熵损失 BCELoss

二分类任务时的交叉熵计算函数。用于测量重构的误差, 例如自动编码机. 注意目标的值 t[i] 的范围为0到1之间.


torch.nn.BCELoss(weight=None, reduction='mean')


参数:

weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度为 “nbatch” 的 的 Tensor

pos_weight(Tensor, optional) – 自定义的每个正样本的 loss 的权重. 必须是一个长度 为 “classes” 的 Tensor

2-6 BCEWithLogitsLoss

BCEWithLogitsLoss损失函数把 Sigmoid 层集成到了 BCELoss 类中. 该版比用一个简单的 Sigmoid 层和 BCELoss 在数值上更稳定, 因为把这两个操作合并为一个层之后, 可以利用 log-sum-exp 的 技巧来实现数值稳定.


torch.nn.BCEWithLogitsLoss(weight=None, reduction='mean', pos_weight=None)


参数:

weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度 为 “nbatch” 的 Tensor

pos_weight(Tensor, optional) – 自定义的每个正样本的 loss 的权重. 必须是一个长度 为 “classes” 的 Tensor

2-7 MarginRankingLoss


torch.nn.MarginRankingLoss(margin=0.0, reduction='mean')


对于 mini-batch(小批量) 中每个实例的损失函数如下:

参数:

margin:默认值0

2-8 HingeEmbeddingLoss


torch.nn.HingeEmbeddingLoss(margin=1.0,  reduction='mean')


对于 mini-batch(小批量) 中每个实例的损失函数如下:

参数:

margin:默认值1

2-9 多标签分类损失 MultiLabelMarginLoss


torch.nn.MultiLabelMarginLoss(reduction='mean')


对于mini-batch(小批量) 中的每个样本按如下公式计算损失:

2-10 平滑版L1损失 SmoothL1Loss

也被称为 Huber 损失函数。


torch.nn.SmoothL1Loss(reduction='mean')


其中

2-11 2分类的logistic损失 SoftMarginLoss


torch.nn.SoftMarginLoss(reduction='mean')


2-12 多标签 one-versus-all 损失 MultiLabelSoftMarginLoss


torch.nn.MultiLabelSoftMarginLoss(weight=None, reduction='mean')


2-13 cosine 损失 CosineEmbeddingLoss


torch.nn.CosineEmbeddingLoss(margin=0.0, reduction='mean')


参数:

margin:默认值0

2-14 多类别分类的hinge损失 MultiMarginLoss


torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None,  reduction='mean')


参数:

p=1或者2 默认值:1

margin:默认值1

2-15 三元组损失 TripletMarginLoss


torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, reduction='mean')


其中:

2-16 连接时序分类损失 CTCLoss

CTC连接时序分类损失,可以对没有对齐的数据进行自动对齐,主要用在没有事先对齐的序列化数据训练上。比如语音识别、ocr识别等等。


torch.nn.CTCLoss(blank=0, reduction='mean')


参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。

2-17 负对数似然损失 NLLLoss

负对数似然损失. 用于训练 C 个类别的分类问题.


torch.nn.NLLLoss(weight=None, ignore_index=-100,  reduction='mean')


参数:

weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor

ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度.

2-18 NLLLoss2d

对于图片输入的负对数似然损失. 它计算每个像素的负对数似然损失.


torch.nn.NLLLoss2d(weight=None, ignore_index=-100, reduction='mean')


参数:

weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。

2-19 PoissonNLLLoss

目标值为泊松分布的负对数似然损失


torch.nn.PoissonNLLLoss(log_input=True, full=False,  eps=1e-08,  reduction='mean')


参数:

log_input (bool, optional) – 如果设置为 True , loss 将会按照公 式 exp(input) - target * input 来计算, 如果设置为 False , loss 将会按照 input - target * log(input+eps) 计算.

full (bool, optional) – 是否计算全部的 loss, i. e. 加上 Stirling 近似项 target * log(target) - target + 0.5 * log(2 * pi * target).

eps (float, optional) – 默认值: 1e-8

参考资料

http://www.voidcn.com/article/p-rtzqgqkz-bpg.html

本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。


往期精彩:

 讲解视频来了!机器学习 公式推导与代码实现开录!

 更新!《机器学习:公式推导与代码实现》1-16章PPT下载

《机器学习 公式推导与代码实现》随书PPT示例

 时隔一年!深度学习语义分割理论与代码实践指南.pdf第二版来了!

 新书首发 | 《机器学习 公式推导与代码实现》正式出版!

《机器学习公式推导与代码实现》将会配套PPT和视频讲解!

浏览 99
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报