最全的损失函数汇总
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
作者:mingo_敏
链接:https://blog.csdn.net/shanglianlm/article/details/85019768
tensorflow和pytorch很多都是相似的,这里以pytorch为例。
1. L1范数损失 L1Loss
torch.nn.L1Loss(reduction='mean')
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。
torch.nn.MSELoss(reduction='mean')
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。
torch.nn.CrossEntropyLoss(weight=None,ignore_index=-100, reduction='mean')
weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度。 reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。
torch.nn.KLDivLoss(reduction='mean')
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。
torch.nn.BCELoss(weight=None, reduction='mean')
weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度为 “nbatch” 的 的 Tensor
torch.nn.BCEWithLogitsLoss(weight=None, reduction='mean', pos_weight=None)
weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度 为 “nbatch” 的 Tensor
7 MarginRankingLoss
torch.nn.MarginRankingLoss(margin=0.0, reduction='mean')
参数:
margin:默认值0
8 HingeEmbeddingLoss
torch.nn.HingeEmbeddingLoss(margin=1.0, reduction='mean')
参数:
margin:默认值1
9 多标签分类损失 MultiLabelMarginLoss
torch.nn.MultiLabelMarginLoss(reduction='mean')
10 平滑版L1损失 SmoothL1Loss
torch.nn.SmoothL1Loss(reduction='mean')
其中
11 2分类的logistic损失 SoftMarginLoss
torch.nn.SoftMarginLoss(reduction='mean')
12 多标签 one-versus-all 损失 MultiLabelSoftMarginLoss
torch.nn.MultiLabelSoftMarginLoss(weight=None, reduction='mean')
13 cosine 损失 CosineEmbeddingLoss
torch.nn.CosineEmbeddingLoss(margin=0.0, reduction='mean')
参数:
margin:默认值0
14 多类别分类的hinge损失 MultiMarginLoss
torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None, reduction='mean')
参数:
p=1或者2 默认值:1
margin:默认值1
15 三元组损失 TripletMarginLoss
torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, reduction='mean'
其中:
torch.nn.CTCLoss(blank=0, reduction='mean')
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。
torch.nn.NLLLoss(weight=None, ignore_index=-100, reduction='mean')
weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度.
torch.nn.NLLLoss2d(weight=None, ignore_index=-100, reduction='mean')
weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。
torch.nn.PoissonNLLLoss(log_input=True, full=False, eps=1e-08, reduction='mean')
好消息!
小白学视觉知识星球
开始面向外开放啦👇👇👇
下载1:OpenCV-Contrib扩展模块中文版教程 在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。 下载2:Python视觉实战项目52讲 在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。 下载3:OpenCV实战项目20讲 在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。 交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论