迈向目标跟踪大统一:一个模型解决所有主流跟踪任务,8项基准出色

人工智能与算法学习

共 2738字,需浏览 6分钟

 ·

2022-07-28 10:44

机器之心报道

来源:机器之心

单目标跟踪、多目标跟踪、视频目标分割、多目标跟踪与分割这四个任务,现在一个架构就搞定了。


目标跟踪是计算机视觉中的一项基本任务,旨在建立帧间像素级或实例级对应关系,并输出 box 或掩码(mask)形式的轨迹。根据不同应用场景,目标跟踪主要分为四个独立的子任务:单目标跟踪(SOT)、多目标跟踪(MOT)、视频目标分割 (VOS) 、多目标跟踪与分割 (MOTS) 。

大多数目标跟踪方法仅针对其中一个或部分子任务。这种碎片化情况带来以下缺点:(1)跟踪算法过度专注于特定子任务,缺乏泛化能力。(2) 独立模型设计导致参数冗余。

那么,是否能用一个统一的模型来解决所有的主流跟踪任务?

现在,来自大连理工大学、字节跳动和香港大学的研究者提出了一种统一的方法,称为 Unicorn,它可以使用相同的模型参数通过单个网络同时解决四个跟踪问题(SOT、MOT、VOS、MOTS)。

Unicorn 的统一表现在在所有跟踪任务中采用相同的输入、主干、嵌入和头,首次实现了跟踪网络架构和学习范式的统一。Unicorn 在 8 个跟踪数据集(包括 LaSOT、TrackingNet、MOT17、BDD100K、DAVIS16-17、MOTS20 和 BDD100K MOTS)上的表现与特定任务方法的性能相当或更好。Unicorn 将成为迈向通用视觉模型的坚实一步。研究论文已被接收为 ECCV 2022 oral 。


  • 论文地址:https://arxiv.org/pdf/2207.07078.pdf
  • 项目地址:https://github.com/MasterBin-IIAU/Unicorn

先来看一下 Unicorn 的实现效果:



我们再来看一下论文的具体内容。

方法

Unicorn 由三个部分组成:统一输入与主干、统一嵌入、统一头。三个组件分别负责获得强大的视觉表征、建立精确的对应关系和检测不同的跟踪目标。Unicorn 的框架如图 2 所示。给定参考帧 I_ref、当前帧 I_cur 和参考目标,Unicorn 旨在通过统一的网络预测当前帧上跟踪目标的状态,以用于四个任务。


统一输入和主干

为了有效地定位多个潜在目标,Unicorn 将整个图像(参考帧和当前帧)而不是局部搜索区域作为输入。在特征提取过程中,参考帧和当前帧通过权重共享主干获得特征金字塔表示(FPN)。为了在计算对应关系时保持重要细节并减少计算负担,本文选择 stride 为 16 的特征图作为之后嵌入模块的输入。参考帧和当前帧的相应特征分别称为 F_ref 和 F_cur。

统一嵌入

目标跟踪的核心任务是在视频中的帧之间建立准确的对应关系。对于 SOT 和 VOS,逐像素对应将用户提供的目标从参考帧(通常是 1^th 帧)传播到 t^th 帧,为最终的框或掩码预测提供强大的先验信息。此外,对于 MOT 和 MOTS,实例级对应有助于将 t^th 帧上检测到的实例与参考帧(通常是 t-1^th 帧)上的现有轨迹相关联。

统一头

为了实现目标跟踪的大统一,另一个重要且具有挑战性的问题是为四个跟踪任务设计一个统一头。具体而言,MOT 检测特定类别的目标,SOT 需要检测参考帧中给定的任何目标。为了弥补这一差距,Unicorn 向原始检测器头引入了一个额外的输入(称为目标先验)。无需任何进一步修改,Unicorn 就可以通过这个统一的头轻松检测四项任务所需的各种目标。

训练和推理

训练:整个训练过程分为 SOT-MOT 联合训练和 VOS-MOTS 联合训练两个阶段。在第一阶段,使用来自 SOT&MOT 的数据对网络进行端到端优化,包括对应损失和检测损失。在第二阶段,使用来自 VOS&MOTS 的数据在其他参数固定的情况下添加和优化掩码分支,并使用掩码损失进行优化。

推理:在测试阶段,对于 SOT&VOS,参考目标图在第一帧生成一次,并在后续帧中保持固定。Unicorn 直接挑选置信度得分最高的框或掩码作为最终的跟踪结果。此外,Unicorn 只需要运行一次主干和对应,是运行轻量级头而不是运行整个网络 N 次,本文方法效率更高。对于 MOT&MOTS,Unicorn 检测给定类别的所有目标并同时输出相应的实例嵌入。之后的关联分别基于 BDD100K 和 MOT17 的嵌入和运行模型执行。

实验

LaSOT:LaSOT 是一个大规模的长期跟踪基准,测试集中包含 280 个视频,平均长度为 2448 帧。表 1 显示 Unicorn 实现了新的 SOTA 成功率和精度,分别为 68.5% 和 74.1%。值得注意的是,Unicorn 以更简单的网络架构和跟踪策略,大大超过了之前最好的基于全局检测的跟踪器 Siam R-CNN(68.5% vs 64.8%)。

TrackingNet:TrackingNet 是一个大规模的短期跟踪基准,测试集中有 511 个视频。如表 1 所示,Unicorn 以 83.0% 的成功率和 82.2% 的精度超越了所有以前的方法。


MOT17 以行人跟踪为重点,训练集有 7 个序列,测试集也有 7 个序列。从表 2 可以看出,Unicorn 实现了最好的 MOTA 和 IDF1,分别比之前的 SOTA 方法高出 0.5% 和 0.4%。


BDD100K 是一个大规模的视觉驾驶场景数据集,需要跟踪 8 类实例。如表 3 所示,Unicorn 取得了最佳性能,在验证集上大大超过了之前的 SOTA 方法 QDTrack。具体来说,mMOTA 和 mIDF1 的提升分别高达 4.6% 和 3.2%。


DAVIS-16 在验证集中包含 20 个视频,每个序列中只有一个跟踪目标。图 4 表明 Unicorn 在使用边框初始化的方法中取得了最好的结果,甚至超过了使用掩码初始化的 RANet 和 FRTM。


MOTS20 Challenge 在训练集中有 4 个序列,在测试集中有 4 个序列。如表 5 所示,Unicorn 实现了 SOAT 性能,在 sMOTSA 上以 3.3% 的幅度超过了第二好的方法 PoinTrackV2。


BDD100K MOTS Challenge 在验证集中包含 37 个序列。图 6 表明 Unicorn 大大优于先前最佳方法 PCAN(即 mMOTSA +2.2%,mAP +5.5%)。同时,Unicorn 没有像 PCAN 那样使用时空存储器或原型网络等复杂设计,引入了更简单的 pipeline。


——The  End——

分享

收藏

点赞

在看


浏览 17
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报