ResNets首次反超有监督学习!DeepMind用自监督实现逆袭,无需标注

新智元报道

新智元报道
编辑:好困 袁榭
【新智元导读】近日,DeepMind又整了个新活:RELIC第二代!首次用自监督学习实现了对有监督学习的超越。莫非,今后真的不用标注数据了?



方法


for x in batch: # load a batch of B samples# Apply saliency mask and remove backgroundx_m = remove_background(x)for i in range(num_large_crops):# Select either original or background-removed# Image with probability p_mx = Bernoulli(p_m) ? x_m : x# Do large random crop and augmentxl_i = aug(crop_l(x))ol_i = f_o(xl_i)tl_i = g_t(xl_i)for i in range(num_small_crops):# Do small random crop and augmentxs_i = aug(crop_s(x))# Small crops only go through the online networkos_i = f_o(xs_i)loss = 0# Compute loss between all pairs of large cropsfor i in range(num_large_crops):for j in range(num_large_crops):loss += loss_relicv2(ol_i, tl_j, n_e)# Compute loss between small crops and large cropsfor i in range(num_small_crops):for j in range(num_large_crops):loss += loss_relicv2(os_i, tl_j, n_e)scale = (num_large_crops + num_small_crops) * num_large_cropsloss /= scale# Compute grads, update online and target networksloss.backward()update(f_o)g_t = gamma * g_t + (1 - gamma) * f_oRELICv2的伪代码
结果






分析



结论
参考资料:
https://arxiv.org/abs/2201.05119

评论
