【小白学习keras教程】一、基于波士顿住房数据集训练简单的MLP回归模型

共 7796字,需浏览 16分钟

 ·

2021-09-04 15:30

「@Author:Runsen」

多层感知机(MLP)有着非常悠久的历史,多层感知机(MLP)是深度神经网络(DNN)的基础算法

MLP基础知识

  • 目的:创建用于简单回归/分类任务的常规神经网络(即多层感知器)和Keras

MLP结构

  • 每个MLP模型由一个输入层、几个隐藏层和一个输出层组成
  • 每层神经元的数目不受限制
具有一个隐藏层的MLP
- 输入神经元数:3 - 隐藏神经元数:4 - 输出神经元数:2

回归任务的MLP

  • 当目标(「y」)连续时
  • 对于损失函数和评估指标,通常使用均方误差(MSE)
from tensorflow.keras.datasets import boston_housing
(X_train, y_train), (X_test, y_test) = boston_housing.load_data()

数据集描述

  • 波士顿住房数据集共有506个数据实例(404个培训和102个测试)
  • 13个属性(特征)预测“某一地点房屋的中值”
  • 文件编号:https://keras.io/datasets/

1.创建模型

  • Keras模型对象可以用Sequential类创建
  • 一开始,模型本身是空的。它是通过「添加」附加层和编译来完成的
  • 文档:https://keras.io/models/sequential/
from tensorflow.keras.models import Sequential

model = Sequential()

1-1.添加层

  • Keras层可以「添加」到模型中
  • 添加层就像一个接一个地堆叠乐高积木
  • 文档:https://keras.io/layers/core/
from tensorflow.keras.layers import Activation, Dense
# Keras model with two hidden layer with 10 neurons each 
model.add(Dense(10, input_shape = (13,)))    # Input layer => input_shape should be explicitly designated
model.add(Activation('sigmoid'))
model.add(Dense(10))                         # Hidden layer => only output dimension should be designated
model.add(Activation('sigmoid'))
model.add(Dense(10))                         # Hidden layer => only output dimension should be designated
model.add(Activation('sigmoid'))
model.add(Dense(1))                          # Output layer => output dimension = 1 since it is regression problem
# This is equivalent to the above code block
model.add(Dense(10, input_shape = (13,), activation = 'sigmoid'))
model.add(Dense(10, activation = 'sigmoid'))
model.add(Dense(10, activation = 'sigmoid'))
model.add(Dense(1))

1-2.模型编译

  • Keras模型应在培训前“编译”
  • 应指定损失类型(函数)和优化器
  • 文档(优化器):https://keras.io/optimizers/
  • 文档(损失):https://keras.io/losses/
from tensorflow.keras import optimizers

sgd = optimizers.SGD(lr = 0.01)    # stochastic gradient descent optimizer

model.compile(optimizer = sgd, loss = 'mean_squared_error', metrics = ['mse'])    # for regression problems, mean squared error (MSE) is often employed


模型摘要

model.summary()
odel: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None10)                140       
_________________________________________________________________
activation (Activation)      (None10)                0         
_________________________________________________________________
dense_1 (Dense)              (None10)                110       
_________________________________________________________________
activation_1 (Activation)    (None10)                0         
_________________________________________________________________
dense_2 (Dense)              (None10)                110       
_________________________________________________________________
activation_2 (Activation)    (None10)                0         
_________________________________________________________________
dense_3 (Dense)              (None1)                 11        
_________________________________________________________________
dense_4 (Dense)              (None10)                20        
_________________________________________________________________
dense_5 (Dense)              (None10)                110       
_________________________________________________________________
dense_6 (Dense)              (None10)                110       
_________________________________________________________________
dense_7 (Dense)              (None1)                 11        
=================================================================
Total params: 622
Trainable params: 622
Non-trainable params: 0
_________________________________________________________________

2.培训

  • 使用提供的训练数据训练模型
model.fit(X_train, y_train, batch_size = 50, epochs = 100, verbose = 1)

3.评估

  • Keras模型可以用evaluate()函数计算
  • 评估结果包含在列表中
  • 文档:https://keras.io/metrics/
results = model.evaluate(X_test, y_test)
print(model.metrics_names)     # list of metric names the model is employing
print(results)                 # actual figure of metrics computed

print('loss: ', results[0])
print('mse: ', results[1])

浏览 46
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报