高效的5个pandas函数,你都用过吗?

Python大数据分析

共 2878字,需浏览 6分钟

 ·

2020-09-23 20:26

点击上方"蓝字"关注我们





Python大数据分析


记录   分享   成长


添加微信号"CNFeffery"加入技术交流群

文章来源:towardsdatascience
作者:Soner Yıldırım
翻译\编辑:Python大数据分析

看标题是否似曾相似?之前为大家介绍过10个高效的pandas函数,颇受欢迎,里面的每一个函数都能帮我们在数据分析过程中节省时间。

高效的10个Pandas函数,你都用过吗?

pandas还有很多让人舒适的用法,这次再为大家介绍5个pandas函数,作为这个系列的第二篇。

1. explode

explode用于将一行数据展开成多行。比如说dataframe中某一行其中一个元素包含多个同类型的数据,若想要展开成多行进行分析,这时候explode就派上用场,而且只需一行代码,非常节省时间。

用法:

DataFrame.explode(self, column: Union[str, Tuple])

参数作用:

  • column :str或tuple

以下表中第三行、第二列为例,展开[2,3,8]:

# 先创建表
id = ['a','b','c']
measurement = [4,6,[2,3,8]]
day = [1,1,1]
df1 = pd.DataFrame({'id':id, 'measurement':measurement, 'day':day})
df1

使用explode轻松将[2,3,8]转换成多行,且行内其他元素保持不变。

df1.explode('measurement').reset_index(drop=True)

2. Nunique

Nunique用于计算行或列上唯一值的数量,即去重后计数。这个函数在分类问题中非常实用,当不知道某字段中有多少类元素时,Nunique能快速生成结果。

用法:

Series.nunique(dropna=True)
# 或者
DataFrame.nunique(axis=0, dropna=True)

参数作用:

  • axis:int型,0代表行,1代表列,默认0;
  • dropna:bool类型,默认为True,计数中不包括NaN;

先创建一个df:

values_1 = np.random.randint(10, size=10)
values_2 = np.random.randint(10, size=10)
years = np.arange(2010,2020)
groups = ['A','A','B','A','B','B','C','A','C','C']
df = pd.DataFrame({'group':groups, 'year':years, 'value_1':values_1, 'value_2':values_2})
df

对year列进行唯一值计数:

df.year.nunique()

输出:10 对整个dataframe的每一个字段进行唯一值计数:

df.nunique()

3. infer_objects

infer_objects用于将object类型列推断为更合适的数据类型。

用法:

# 直接将df或者series推断为合适的数据类型
DataFrame.infer_objects()

pandas支持多种数据类型,其中之一是object类型。object类型包括字符串和混合值(数字及非数字)。

object类型比较宽泛,如果可以确定为具体数据类型,则不建议用object。

df = pd.DataFrame({"A": ["a"123]})
df = df.iloc[1:]
df
df.dtypes

使用infer_objects方法将object推断为int类型:

df.infer_objects().dtypes

4. memory_usage

memory_usage用于计算dataframe每一列的字节存储大小,这对于大数据表非常有用。

用法:

DataFrame.memory_usage(index=True, deep=False)

参数解释:
index:指定是否返回df中索引字节大小,默认为True,返回的第一行即是索引的内存使用情况;
deep:如果为True,则通过查询object类型进行系统级内存消耗来深入地检查数据,并将其包括在返回值中。

首先创建一个df,共2列,1000000行。

df_large = pd.DataFrame({'A': np.random.randn(1000000),
                    'B': np.random.randint(100, size=1000000)})
df_large.shape

返回每一列的占用字节大小:

df_large.memory_usage()

第一行是索引index的内存情况,其余是各列的内存情况。

5. replace

顾名思义,replace是用来替换df中的值,赋以新的值。

用法:

DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad')

参数解释:

  • to_replace:被替换的值
  • value:替换后的值
  • inplace:是否要改变原数据,False是不改变,True是改变,默认是False
  • limit:控制填充次数
  • regex:是否使用正则,False是不使用,True是使用,默认是False
  • method:填充方式,pad,ffill,bfill分别是向前、向前、向后填充

创建一个df:

values_1 = np.random.randint(10, size=10)
values_2 = np.random.randint(10, size=10)
years = np.arange(2010,2020)
groups = ['A','A','B','A','B','B','C','A','C','C']
df = pd.DataFrame({'group':groups, 'year':years, 'value_1':values_1, 'value_2':values_2})
df

将A全部替换为D:

df.replace('A','D')

将B替换为E,C替换为F:

df.replace({'B':'E','C':'F'})
· 往期精选 ·
1

用Python打造一款文件搜索工具,所有功能自己定义!

2

在模仿中精进数据可视化02:温室气体排放来源可视化

3

Vaex :突破pandas,快速分析100GB大数据集




Python大数据分析

data creates value

扫码关注我们


浏览 13
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报