软包装锂离子电池的表面凸点缺陷检测
共 13465字,需浏览 27分钟
·
2024-04-16 10:05
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
Surface bump defect detection for pouch Li-ion battery
ZENG Zhen1,2,WANG Hong-bo1,2∗,WANG Zheng-jia1,2,HE Tao1,2
( 1.Hubei key Laboratory of Modern Manufacturing Quality Engineering,Wuhan,Hubei 430068,China;2.Hubei University of Technology,School of Mechanical Engineering,Wuhan,Hubei 430068,China )
Abstract:Because of the uneven and reflective appearance of the aluminum-plastic film outer packaging of the pouch Li-ion battery,the identification of the bump defect of the surface image was low,which was difficult to be accurately identified by traditional methods. The image features of bump defects of pouch Li-ion battery and visual detection system were analyzed. Gaussian filter was used to preprocess the image in frequency domain to achieve the effect of removing noise and image enhancement of defect area. Inverse Fourier transform was used to transfer the image from frequency domain to space domain. Finally,the processed image was imported into the deep learning model based on semantic segmentation method for bump defect detection. 400 groups of defect samples were tested,the results showed that the defect detection accuracy of pouch Li-ion battery by proposed method reached 95.75%. The detection accuracy without processing with frequency domain image enhancement method was only 44. 00% . The
detection results had been significantly improved,which proved that the method could detect the low recognition bump defects of the surface image of the pouch Li-ion battery and had a certain practical value.
Keywords:frequency domain; image enhancement; pouch Li-ion battery; bump; defect detection
1 软包装锂离子电池表面缺陷检测系统
3 验证结果
缺陷类别 |
数量/只 |
误检率/ % |
准确率/ % |
|||
样本数 |
正确检测 |
漏检 |
误检 |
|||
合格 |
200 |
110 |
0 |
90 |
45.00 |
55.00 |
凸点 |
200 |
66 |
0 |
134 |
67.00 |
33.00 |
总计 |
400 |
176 |
0 |
224 |
56.00 |
44.00 |
缺陷类别 |
数量/只 |
误检率/ % |
准确率/ % |
|||
样本数 |
正确检测 |
漏检 |
误检 |
|||
合格 |
200 |
191 |
0 |
9 |
4.50 |
95.50 |
凸点 |
200 |
192 |
0 |
8 |
4.00 |
96.00 |
总计 |
400 |
383 |
0 |
17 |
4.25 |
95.75 |
序号 |
凸点外接圆直径/mm |
绝对误差/mm |
相对误差/% |
|
测量值 |
真实值 |
|||
1 |
1.47 |
1.41 |
0.06 |
4.08 |
2 |
5.23 |
5.37 |
0.15 |
2.87 |
3 |
7.82 |
7.68 |
0.14 |
1.79 |
4 |
3.17 |
3.09 |
0.08 |
2.52 |
5 |
8.62 |
8.84 |
0.22 |
2.55 |
6 |
2.14 |
2.07 |
0.07 |
3.27 |
7 |
4.73 |
4.59 |
0.14 |
2.96 |
8 |
7.51 |
7.28 |
0.23 |
3.06 |
9 |
1.98 |
1.92 |
0.06 |
3.03 |
10 |
4.43 |
4.57 |
0.14 |
3.16 |
4 结论
参考文献:
[1] 胡丽娜,孙珊珊,岳娟,等.锂离子电池气胀原因探讨[J].电池,2021,51(3):261-265.
HU L N,SUN S S,YUE J,et al. Discussion on the causes of Li-ion battery swelling[J]. Battery Bimonthly,2021,51(3):261-265.
[2] CHEN Y G,SHU Y F,LI X M,et al. Research on detection algorithm of lithium battery surface defects based on embedded machine vision[J].J Intell Fuzzy Syst,2021,41(3):4327-4335.
[3] 刘春,利新琴,鲁昌华,等.密封橡胶圈凸点缺陷检测的研究[J].电子测量与仪器学报,2008,22(S2):178-181.
LIU C,LI X Q,LU C H,et al. Research on detection method for convex dot defect of rubber ring[J].Journal of Electronic Measurement and Instrument,2008,22(S2):178-181.
[4] 黄梦涛,连一鑫.基于改进Canny算子的锂电池极片表面缺陷检测[J].仪器仪表学报,2021,42(10):199-209.
HUANG M T,LIAN Y X. Lithium battery electrode plate surface defect detection based on improved Canny operator[J].Chinese Journal of Scientific Instrument,2021,42(10):199-209.
[5] 肖艳军,齐浩,周围,等. 锂电池极片轧机轧辊表面缺陷检测与识别[J].电子测量与仪器学报,2019,33(10):148-156.
XIAO Y J,QI H,ZHOU W,et al. Detection and recognition of roll surface defects in lithium battery strip mill[J].Journal of Electronic Measurement and Instrument,2019,33(10):148-156.
[6] GB/ T 33143—2022,锂离子电池用铝及铝合金箔[S].GB/T 33143—2022, Aluminium and Aluminium Alloy Foils for Lithium Ion Batteries[S].
[7] 张鹏博,张晓华,王训,等.锂离子电池用铝塑复合膜精密冲压工艺研究[J]. 热加工工艺,2016,45(7):167-170.
ZHANG P B,ZHANG X H,WANG X,et al. Study on precision stamping process of Al-plastic compound film for Li-ion battery[J]. Hot Working Technology,2016,45(7):167-170.
[8] 章毓晋. 图像工程(上册):图像处理和分析[M]. 北京:清华大学出版社,1999:72.
ZHANG Y J.Image Engineering(Volume 1):Image Processing and Analysis[M]. Beijing:Tsinghua University Press,1999:72.
[9] 孙振兴. 基于DSP 的图像增强技术研究[D]. 西安:西安电子科技大学,2012.
SUN Z X. Research on image enhancement technology based on DSP[D]. Xi’an:Xidian University,2012.
[10] 李庚银,陈志业,宁宇.快速傅里叶变换的两种改进算法[J].电力系统自动化,1997(12):37-40.
LI G Y,CHEN Z Y,NING Y. Two improved algorithms of fast Fourier transform [J]. Automation of Electric Power Systems, 1997(12):37-40.
[11] 李健,丁小奇,陈光,等. 基于改进高斯滤波算法的叶片图像去噪方法[J]. 南方农业学报,2019,50(6):1385-1391.
LI J,DING X Q,CHEN G,et al. Blade image denoising method based on improved Gauss filtering algorithm[J]. Journal of Southern Agriculture,2019,50(6):1385-1391.
[12] 司祯祯. 傅里叶变换与小波变换在信号去噪中的应用[J].电子设计工程,2011,19(4):155-157.
SI Z Z. Application of Fourier transform and wavelet transform in signal de-noising[J]. Electronic Design Engineering,2011,19(4):155-157.
[13] WULFF F, SCHÄUFELE B, SAWADE O, et al. Early fusion of camera and lidar for robust road detection based on U-Net FCN[C]//2018 IEEE Intelligent Vehicles Symposium (IV).IEEE,2018:1426-1431.
[14] CSURKA G, PERRONNIN F. An efficient approach to semantic segmentation[J]. Int J Comput Vision,2011,95(2):198-212.
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
下载2:Python视觉实战项目52讲 在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
下载3:OpenCV实战项目20讲 在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~