笔记|李宏毅老师机器学习课程,视频18Fizz Buzz in Tensorflow
共 1150字,需浏览 3分钟
·
2021-06-08 07:02
《学习笔记》专栏·第21篇
文 | MLer
718字 | 2分钟阅读
【数据科学与人工智能】开通了机器学习群,大家可以相互学习和交流。请扫描下方二维码,备注:姓名-ML,添加我为好友,诚邀你入群,一起进步。
感谢李宏毅老师的分享,他的课程帮助我更好地学习、理解和应用机器学习。李老师的网站:
http://speech.ee.ntu.edu.tw/~tlkagk/index.html。
这个学习笔记是根据李老师2017年秋季机器学习课程的视频和讲义做的记录和总结。因为这个视频是在Youtube上面,有些朋友可能无法观看,我把它搬运下来放在云盘上面,大家点击阅读原文,就可以直接在手机随时随地观看了。再次,感谢李老师的付出和贡献。
这门课,共有36个视频,每个视频播放的时间不一。我按着视频播放的顺序,观看,聆听和学习,并结合讲义,做学习笔记。我做学习笔记目的有三:
1 帮助自己学习和理解机器学习
2 记录机器学习的重要知识、方法、原理和思想
3 为传播机器学习做点事情
视频18:Fizz Buzz in Tensorflow
一、Fizz Buzz的有趣例子
李老师有趣的分享了一个面试题目,并且通过Keras做实验,进行了演示。
创意的地方,有以下三点:
第一,把输入的数字采用二进制表示,输出的使用one-hot编码
第二,对于训练集做性能分析,若是发现性能不佳的时候,调整神经网络的结构,即层数,从而让寻模型在训练集学习到一个更好的函数
第三,对比分析训练集和测试集上面的性能
我们在做模型和应用模型的时候,首先要对问题的定义、抽象和描述,需要做深入地思考。正确的问题,是我们解决问题和创造价值的源头。
更多详细的内容,请点击阅读原文,查看视频。
朋友们,在学习中有什么问题或者想法,请加入机器学习群,大家一起讨论,共同进步。
每周一书
课程视频点击
↓↓↓