↑↑↑点击上方蓝字,回复资料,10个G的惊喜
机器之心编辑部
李宏毅的机器学习课有超过 400 人现场听课,只好把学生分在两间教室:一间「摇滚区」现场看,一间「同步区」看直播。
今年 2 月末,「精灵宝可梦大师」李宏毅的《机器学习》最新一期课程正式开课。对于想要入门机器学习的同学来说,这是一门不容错过的经典课程,视频、PPT 等资料都可以在课程页面找到,而且授课语言是中文。在内容方面,这门课程重点讲解的是深度学习。虽然深度学习是一门相对进阶的技术,但李宏毅老师表示,这不会改变这门课「机器学习入门课」的属性,仍然会让绝大多数人听得懂,「你可以将它作为你机器学习的第一门课」。如果你还学过林轩田的《机器学习基石与技法》,你会发现这两门课其实可以很好地衔接。「从最基本的观念讲到最前瞻的技术」是这门课最重要的一个特色,从课程目录中我们也可以大致看出来:课程介绍
深度学习
自注意力
机器学习理论
Transformer
生成式模型
自监督学习
可解释 AI / 对抗攻击
域自适应 / 强化学习
量子机器学习
终身压缩
元学习
前段时间,这门课程已经全部更新完毕,李宏毅老师也收获了新一波的赞誉:
由此可见,今年的课程依然保持了极高的水准。而且从 PPT 来看,李老师的幽默指数也丝毫没有打折:
除了李老师的授课内容外,他的助教在上课过程中也承担了一些答疑工作,不过这些答疑内容之前并没有公开。刚刚,Reddit 上的一位网友表示,为了方便大家更好地消化这门课的内容,他们将这些答疑汇编到了一起,组成了一本机器学习手册供大家参阅:为什么要编这么一本小册子?作者表示,目前互联网上的机器学习资料多种多样,不过它们要么太长,开始获取知识就要半个小时,要么则需要充分的数学基础,还有一些资料结构不太清晰,概念的区分并不严格。这本机器学习手册旨在解决上述问题,最重要的是它力图简洁。从形式来看,这是一本问答手册,与著名 IT 技术问答网站 StackOverFlow 类似。手册里的问题来自参与上述课程的 1300 多名学生。作者相信这种形式能够让大家学习机器学习更加方便。「它主要是为那些想要快速掌握一个概念,而无需深入研究主题的学习者准备的(显然,真想学透需要很长时间)。它将覆盖机器学习,特别是深度学习领域的所有知识。」不过,该手册的答案受到了一些质疑,而且没有类似「赞成」和「反对」的按钮,因此读者很难给出反馈。对此,作者回应说,这些答案大部分来自助教,而且原来是中文的,因此翻译过程中可能存在一些疏漏,之后会进一步完善。
正如作者所言,书中的一切都是以问答形式展开的,不过细节代码一个都不会少:从机器学习数据、模型损失函数几大部分的概念,到神经网络的各个层级,再到强化学习的奖励机制,目前这本书所包括的内容已经相当完整。不过作者表示,未来还会有更多内容将不断添加进来。
老铁,三连支持一下,好吗?↓↓↓