清华大学王东:《机器学习导论》PDF

共 661字,需浏览 2分钟

 ·

2021-07-29 10:07

点击上方摸鱼吧算法工程师”卡片,关注星标
获取有趣、好玩的前沿干货!
清华大学语音语言中心王东老师的《机器学习导论》一书由清华大学出版社出版,清华大学朱小燕教授为本书做序。898ac47881d732ed812d19ac7cb23145.webp本书主页:http://mlbook.cslt.org本书主要目的不是细致讨论各种具体算法,而是将各种看似高深的方法有机组织起来,告诉学生们每种方法的基本思路、基本用法及与其它技术的关联,帮助其走入机器学习的宏伟殿堂。除作者讲以外,还有冯洋、王彩霞、王卯宁三位老师,分别讲述图模型、核方法和遗传算法。研讨班取得了意想不到的效果,很多学生不仅掌握了基础知识和基本方法,对这些方法与具体应用研究的结合也有了更深刻的理解,为在本领域的深入研究打下了基础。全书共分十一章,内容如下:第一章:介绍机器学习研究的总体思路,发展历史与关键问题;
第二章:介绍线性模型,包括线性预测模型,线性分类模型和线性高斯概率模型;
第三章:介绍神经网络的基础知识、基础结构和训练方法;
第四章:介绍深度神经网络的基础方法和最新进展;
第五章:介绍核方法,特别是支持向量机模型;
第六章:介绍图模型的基本概念和基于图模型的学习和推理方法;
第七章:介绍无监督学习方法,特别是各种聚类方法和流形学习;
第八章:介绍非参数贝斯模型,重点关注高斯过程和狄利克雷过程;
第九章:介绍遗传算法、遗传编程、群体学习等演化学习方法;
第十章:介绍强化学习,包括基础算法及近年来兴起的深度强化学习方法;
第十一章:介绍各种数值优化方法。

下面为部分内容展示。6018bea32f4dc0c0ab04047a463e5314.webpddf967e5851ae2582a0f4e86ff97aeff.webp

获取方式:点击下方公众号卡片回复:机器学习导论 即可
浏览 24
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报