10天入门 pyspark

Python与算法社区

共 2803字,需浏览 6分钟

 ·

2021-02-01 22:08

一,pyspark 🍎  or spark-scala 🔥 ?

pyspark强于分析,spark-scala强于工程。

如果应用场景有非常高的性能需求,应该选择spark-scala.

如果应用场景有非常多的可视化和机器学习算法需求,推荐使用pyspark,可以更好地和python中的相关库配合使用。

此外spark-scala支持spark graphx图计算模块,而pyspark是不支持的。

pyspark学习曲线平缓,spark-scala学习曲线陡峭。

从学习成本来说,spark-scala学习曲线陡峭,不仅因为scala是一门困难的语言,更加因为在前方的道路上会有无尽的环境配置痛苦等待着读者。

而pyspark学习成本相对较低,环境配置相对容易。从学习成本来说,如果说pyspark的学习成本是3,那么spark-scala的学习成本大概是9。

如果读者有较强的学习能力和充分的学习时间,建议选择spark-scala,能够解锁spark的全部技能,并获得最优性能,这也是工业界最普遍使用spark的方式。

如果读者学习时间有限,并对Python情有独钟,建议选择pyspark。pyspark在工业界的使用目前也越来越普遍。

二,本书📚 面向读者🤗

本书假定读者具有基础的的Python编码能力,熟悉Python中numpy, pandas库的基本用法。

并且假定读者具有一定的SQL使用经验,熟悉select,join,group by等sql语法。

三,本书写作风格🍉

本书是一本对人类用户极其友善的pyspark入门工具书,Don't let me think是本书的最高追求。

本书主要是在参考spark官方文档,并结合作者学习使用经验基础上整理总结写成的。

不同于Spark官方文档的繁冗断码,本书在篇章结构和范例选取上做了大量的优化,在用户友好度方面更胜一筹。

本书按照内容难易程度、读者检索习惯和spark自身的层次结构设计内容,循序渐进,层次清晰,方便按照功能查找相应范例。

本书在范例设计上尽可能简约化和结构化,增强范例易读性和通用性,大部分代码片段在实践中可即取即用。

如果说通过学习spark官方文档掌握pyspark的难度大概是5,那么通过本书学习掌握pyspark的难度应该大概是2.

仅以下图对比spark官方文档与本书《10天吃掉那只pyspark》的差异。

四,本书学习方案 ⏰

1,学习计划

本书是作者利用工作之余大概1个月写成的,大部分读者应该在10天可以完全学会。

预计每天花费的学习时间在30分钟到2个小时之间。

当然,本书也非常适合作为pyspark的工具手册在工程落地时作为范例库参考。

点击学习内容蓝色标题即可进入该章节。

日期学习内容内容难度预计学习时间更新状态

一、基础篇


day11-1,快速搭建你的Spark开发环境⭐️⭐️1hour
day21-2,60分钟看懂Spark的基本原理⭐️⭐️⭐️1hour

二、核心篇


day32-1,2小时入门Spark之RDD编程⭐️⭐️⭐️0.5hour
day42-2,7道RDD编程练习题⭐️⭐️⭐️1hour
day52-3,2小时入门SparkSQL编程⭐️⭐️⭐️2hour
day62-4,7道SparkSQL编程练习题⭐️⭐️⭐️1hour

三、进阶篇


day73-1,Spark性能调优方法⭐️⭐️⭐️⭐️⭐️2hour
day83-2,RDD和SparkSQL综合应用⭐️⭐️⭐️⭐️⭐️2hour

四、拓展篇


day94-1,探索MLlib机器学习⭐️⭐️⭐️⭐️2hour
day104-2,初识StructuredStreaming⭐️⭐️⭐️1hour

2,学习环境

本书全部源码在jupyter中编写测试通过,建议通过git克隆到本地,并在jupyter中交互式运行学习。

为了直接能够在jupyter中打开markdown文件,建议安装jupytext,将markdown转换成ipynb文件。

为简单起见,本书按照如下2个步骤配置单机版spark3.0.1环境进行练习。

step1: 安装java8

jdk下载地址:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

java安装教程:https://www.runoob.com/java/java-environment-setup.html

step2: 安装pyspark,findspark

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyspark

pip install findspark

此外,也可以在kesci云端notebook中直接运行pyspark

https://www.kesci.com/home/project

import findspark

#指定spark_home,指定python路径
spark_home = "/Users/liangyun/anaconda3/lib/python3.7/site-packages/pyspark"
python_path = "/Users/liangyun/anaconda3/bin/python"
findspark.init(spark_home,python_path)

import pyspark 
from pyspark import SparkContext, SparkConf
conf = SparkConf().setAppName("test").setMaster("local[4]")
sc = SparkContext(conf=conf)

print("spark version:",pyspark.__version__)
rdd = sc.parallelize(["hello","spark"])
print(rdd.reduce(lambda x,y:x+' '+y))

spark version: 3.0.1
hello spark

五,鼓励和联系作者

如果本书对你有所帮助,想鼓励一下作者,记得给本项目加一颗星星star⭐️,并分享给你的朋友们喔😊!

Github链接:

https://mp.weixin.qq.com/s/MKiluvH4de9UlMqJg0SkFQ

如果对本书内容理解上有需要进一步和作者交流的地方,欢迎关注作者的公众号"算法美食屋":

浏览 27
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报