谷歌大脑高级研究科学家:我的六年机器学习博士生涯总结
机器学习算法与Python实战
共 5170字,需浏览 11分钟
·
2021-01-18 17:18
↑↑↑点击上方蓝字,回复资料,10个G的惊喜
来源:AI科技评论
个人主页:
https://maithraraghu.com/
研究陷入僵局时
资料整理:搜集所有实验结果、数学方法、随手记录研究动机的笔记等等,并花点时间将这些信息汇集起来,尝试写一篇文章。这个过程可以帮助你了解目前研究所处的位置,以及当下研究状态与研究目标的差距在哪里。 中心点:如果是项目的某个部分无法正常运作,那么是否可以重新确定研究问题(也许是从相关工作中汲取灵感),以使研究更容易进行呢? 建立联系:当前项目所关注的领域与其他研究领域之间是否存在联系?可以在这个研究项目中探索这种联系吗?这既可以帮助推进研究,也可以使项目与其他领域产生更广泛的联系。 获得论文反馈:从研究同行、合作者和朋友那里获得关于项目论文的反馈也可能会有所帮助。他们也许能够提供新的观点或改进建议。 参加Workshop:把论文提交到Workshop也有用。这个方法也能帮助整合所有研究结果,并获得有用的反馈。(Maithra提到,她从机器学习会议上的workshop中获得了许多收益,因为她可以讨论/获取有关当前方向的反馈,并见到同一领域的其他研究人员。) 及时止损:有时候,一个项目在刚开始时前景很好,但很难正常运行,项目本身对重新建立框架,或与其他领域建立联系都具有挑战性。在这张情况下,最好的方法也许是迅速中止项目,转到其他研究。如果之前的项目已经取得部分成果,可以针对这些成果撰文并进行分享,取得合作者的同意与最终反馈,将论文发表为arXiv预引文或Workshop论文。
与时俱进感到费力时
感到孤独时
原文链接:
https://maithraraghu.com/blog/2020/Reflections_on_my_Machine_Learning_PhD_Journey/
也可以加一下老胡的微信 围观朋友圈~~~
推荐阅读
(点击标题可跳转阅读)
老铁,三连支持一下,好吗?↓↓↓
评论