CVPR2022论文速递(2022.5.10)!共15篇!
Updated on : 10 May 2022
total number : 15
Online Unsupervised Domain Adaptation for Person Re-identification
论文/Paper: http://arxiv.org/pdf/2205.04383
代码/Code: None
Beyond a Pre-Trained Object Detector: Cross-Modal Textual and Visual Context for Image Captioning
论文/Paper: http://arxiv.org/pdf/2205.04363
代码/Code: https://github.com/GT-RIPL/Xmodal-Ctx
Panoptic Neural Fields: A Semantic Object-Aware Neural Scene Representation
论文/Paper: http://arxiv.org/pdf/2205.04334
代码/Code: None
SwinIQA: Learned Swin Distance for Compressed Image Quality Assessment
论文/Paper: http://arxiv.org/pdf/2205.04264
代码/Code: None
Beyond Bounding Box: Multimodal Knowledge Learning for Object Detection
论文/Paper: http://arxiv.org/pdf/2205.04072
代码/Code: None
On Conditioning the Input Noise for Controlled Image Generation with Diffusion Models
论文/Paper: http://arxiv.org/pdf/2205.03859
代码/Code: None
Unsupervised Homography Estimation with Coplanarity-Aware GAN
论文/Paper: http://arxiv.org/pdf/2205.03821
代码/Code: https://github.com/megvii-research/HomoGAN.
Transformer Tracking with Cyclic Shifting Window Attention
论文/Paper: http://arxiv.org/pdf/2205.03806
代码/Code: None
A Closer Look at Few-shot Image Generation
论文/Paper: http://arxiv.org/pdf/2205.03805
代码/Code: None
Non-parametric Depth Distribution Modelling based Depth Inference for Multi-view Stereo
论文/Paper: http://arxiv.org/pdf/2205.03783
代码/Code: https://github.com/NVlabs/NP-CVP-MVSNet
Recurrent Dynamic Embedding for Video Object Segmentation
论文/Paper: http://arxiv.org/pdf/2205.03761
代码/Code: https://github.com/Limingxing00/RDE-VOS-CVPR2022.
End-to-End Rubbing Restoration Using Generative Adversarial Networks
论文/Paper: http://arxiv.org/pdf/2205.03743
代码/Code: None
GenISP: Neural ISP for Low-Light Machine Cognition
论文/Paper: http://arxiv.org/pdf/2205.03688
代码/Code: None
NeuralHDHair: Automatic High-fidelity Hair Modeling from a Single Image Using Implicit Neural Representations
论文/Paper: http://arxiv.org/pdf/2205.04175
代码/Code: None
Bandits for Structure Perturbation-based Black-box Attacks to Graph Neural Networks with Theoretical Guarantees
论文/Paper: http://arxiv.org/pdf/2205.03546
代码/Code: https://github.com/Metaoblivion/Bandit_GNN_Attack