降本提效!注册中心在蚂蚁集团的蜕变之路

共 9522字,需浏览 20分钟

 ·

2021-11-26 23:47

324adb0e548be9f411f48114a13591c2.webp


文|林育智(花名:源三 )

蚂蚁集团高级专家专注微服务/服务发现相关领域

校对|李旭东


本文 8624 字 阅读 18 分钟



|引 言|


服务发现是构建分布式系统的最重要的依赖之一, 在蚂蚁集团承担该职责的是注册中心和 Antvip,其中注册中心提供机房内的服务发现能力,Antvip 提供跨机房的服务发现能力。


本文讨论的重点是注册中心和多集群部署形态(IDC 维度)集群和集群之间不涉及到数据同步


PART. 1

背 景


回顾注册中心在蚂蚁集团的演进,大概起始于 2007/2008 年,至今演进超过 13 年。时至今日,无论是业务形态还是自身的能力都发生了巨大的变化。


简单回顾一下注册中心的历代发展:


 V1:引进淘宝的 configserver


dfedbc727996570fa7688511a819609e.webp


 V2:横向扩展 


598e2b54a9d9296e8847110c85b55220.webp


从这个版本开始,蚂蚁和阿里开始独立的演进,最主要的差异点是在数据存储的方向选择上。蚂蚁选择了横向扩展,数据分片存储。阿里选择了纵向扩展,加大 data 节点的内存规格。


这个选择影响到若干年后的 SOFARegistry 和 Nacos 的存储架构。


 V3 / V4:LDC 支持和容灾 


b3328b0252a2e67758dbec6907602bc9.webp


V3 支持 LDC 单元化。


V4 增加了决策机制和运行时列表,解决了单机宕机时需要人工介入处理的问题,一定程度上提升高可用和减少运维成本。


 V5:SOFARegistry


28b68d220e83b9ea1cb8757ebea0ca52.webp


前四个版本是 confreg,17 年启动 V5 项目 SOFARegistry,目标是:


1.代码可维护性:confreg 代码历史包袱较重

- 少量模块使用 guice 做依赖管理,但大部分模块是静态类交互,不容易分离核心模块和扩展模块,不利于产品开源。

- 客户端与服务端的交互模型嵌套复杂,理解成本极高且对多语言不友好。


2.运维痛点:引入 Raft 解决 serverlist 的维护问题,整个集群的运维包括 Raft,通过 operator 来简化。


3.鲁棒性:在一致性 hash 环增加多节点备份机制(默认 3 副本),2 副本宕机业务无感。


4.跨集群服务发现:站内跨集群服务发现额外需要 antvip 支撑,希望可以统一 2 套设施的能力,同时商业化场景也有跨机房数据同步的需求。


这些目标部分实现了,部分实现的还不够好,例如运维痛点还残留一部分,跨集群服务发现在面对主站的大规模数据下稳定性挑战很大。


 V6:SOFARegistry 6.0 


2020 年 11 月,SOFARegistry 总结和吸收内部/商业化打磨的经验,同时为了应对未来的挑战,启动了 6.0 版本大规模重构计划。


历时 10 个月,完成新版本的开发和升级工作,同时铺开了应用级服务发现。


PART. 2

挑 战


 当下面临的问题 


集群规模的挑战


- 数据增长:随着业务的发展,业务的实例数在不断增长,pub/sub 的数量也相应增长。以其中一个集群为例,2019 年的数据为基准数据,在 2020 年 pub 接近千万级。
下图是该集群历年双十一时的数据对比和切换应用级的优化效果。相比 2019 年双十一,2021 年双十一接口级的 pub 增长 200%,sub 增长 80%。
795d6746531f920468d9a81ba8d97309.webp
- 故障爆炸半径增长:集群接入的实例越多,故障影响的业务和实例数也就越多,保障业务的稳定是最基础也是优先级最高的要求。
- 考验横向扩展能力:集群达到一定的规模后,是否还具备继续横向扩展的能力,需要集群具备良好的横向扩展能力,从 10 扩到 100 和从 100 扩到 500 是不一样的难度。
- HA 能力:集群实例数多了后,面临的节点总体的硬件故障率也相应增高,各种机器故障集群是否能快速恢复?有运维经验的同学都知道,运维一个小集群和运维一个大集群面临的困难简直是指数级增长。
- 推送性能:大多数服务发现的产品都选择了数据的最终一致性,但是这个最终在不同集群的规模下到底是多久?相关的产品其实都没有给出明确的数据。
但是实际上,我们认为这个指标是服务发现产品的核心指标。这个时长对调用有影响:新加的地址没有流量;删除的地址没有及时摘除等。蚂蚁集团的 PaaS 对注册中心的推送时延是有 SLO 约束的:如果变更推送列表延时超过约定值,业务端的地址列表就是错误的。我们历史上也曾发生过因推送不及时导致的故障。
业务实例规模增加的同时也带来推送的性能压力:发布端 pub 下面的实例数增加;订阅端业务实例数增加;一个简单的估算,pub/sub 增长 2 倍,推送的数据量是 2*2,增长 4 倍,是一个乘积的关系。同时推送的性能也决定了同一时间可以支持的最大运维业务实例数,例如应急场景下,业务大规模重启。如果这个是瓶颈,就会影响故障的恢复时间。


集群规模可以认为是最有挑战性的,核心的架构决定了它的上限,确定后改造成本非常高。而且往往等到发现瓶颈的时候已经是兵临城下了,我们要选择能拉高产品技术天花板的架构。


运维的挑战


SOFARegistry 立项时的一个主要目标是具备比 confreg 更好的运维能力:引入 meta 角色,通过 Raft 选举和存储元信息,提供集群的控制面能力。但是事实证明,我们还是低估了可运维的重要性,正如鲁迅先生说:【程序员的工作只有两件事情,一件是运维,另一件还是运维】


三年前的目标放到今天已经严重滞后了。


- 集群数增长:蚂蚁集团内部的业务是分站点部署的(简单理解为每个站点是一块相对比较独立的业务,需要不同级别的隔离),同时一个站点需要部署多套集群:容灾需要分机房部署;开发需要分多环境。部署站点的数目增长超出我们的想像。现在已经达到数百个集群了,还在迅速增长中,增长速度参考最近几年美联储的货币供应量增长速度。以前认为有些运维工作可以苟且,人肉顶一下,集群数增长后,苟且次数太多了,挤占了开发/运维同学的精力,完全没资源去规划诗和远方。
04f63202fc456bad37c9713d0181e5d6.webp
业务打扰:业务的运维是全天候 7*24 的,容量自适应/自愈/MOSN 每月一版本把全站应用犁一遍等等。下图是每分钟运维的机器批数,可以看到,就算是周末和深夜,运维任务也是不断的。


37a24b031b140747929707a00e865d14.webp


蚂蚁集团的同学对注册中心的运维公告应该是比较熟悉和痛恨的。因为业务的敏感性,注册中心之前一直是停机发布和运维,这个时候需要锁定全站的发布/重启动作。为了尽量少影响业务,注册中心相关的同学只能献祭一头黑发,在深夜低峰期做相关的操作。即使这样,仍然没办法做到对业务零打扰。



 云原生时代 naming 的挑战 


8bc69749e39fa1c38c6e4f2255669a07.webp


云原生的技术时代下,可以观察到一些趋势:


- 微服务/FaaS 的推广导致轻型应用增多:实例数增多,需要能支撑更大的业务规模
- 应用实例的生命周期更短:FaaS 按需使用,autoscale 容量自适应等手段导致实例的涨潮退潮更频繁,注册中心的性能主要体现在实例变更的响应速度上
- 多语言支持:在过去,蚂蚁集团主要的开发体系是 Java,非 Java 语言对接基础设施都是二等公民,随着 AI 和创新性业务的需求,非 Java 体系的场景越来越多。如果按照每种语言一个 SDK,维护成本会是个噩梦,当然 sidecar(MOSN)是个解法,但是自身是否能支持低侵入性的接入方式,甚至 sdk-free 的能力?
- 服务路由:在过去绝大部分的场景都可以认为 endpoint 是平等的,注册中心只提供通信的地址列表是可以满足需求的。在 Mesh 的精确路由场景里面,pilot 除了提供 eds(地址列表)也同时提供 rds(routing),注册中心需丰富自身的能力。
- K8s:K8s 当前已经成为事实上的分布式操作系统,K8s-service 如何和注册中心打通?更进一步,是否能解决 K8s-service 跨 multi-cluster 的问题?


「总结」


综上,除了脚踏实地,解决当下的问题,还需要仰望星空。具备解决云原生趋势下的 naming 挑战的可能性,也是 V6 重构的主要目标。


PART. 3

SOFARegistry 6.0:面向效能


SOFARegistry 6.0 不只是一个注册中心引擎,需要和周边的设施配合,提升开发、运维、应急的效能,解决以下的问题。(红色模块是比较有挑战性的领域)


7b81dd0922a408a045f221e8c44157fe.webp


SOFARegistry 6.0 相关的工作包括:


26a0d1b92b231f0db1439fd2e98f5b52.webp



 架构优化 


架构的改造思路:在保留 V5 的存储分片架构的同时,重点的目标是优化元信息 meta 一致性和确保推送正确的数据。


f47f8f17738d895ae2835eabf131af5c.webp


元信息 meta 一致性


V5 在 meta 角色中引入 Raft 的强一致性进行选举 leader 和存放元信息,其中元信息包括节点列表和配置信息。数据的分片通过获取 meta 的节点列表做一致性 hash,这里面存在两个问题:


- Raft/operator 运维复杂  (1)定制运维流程:需要支持 change peer 等编排。在蚂蚁集团,特化的运维流程成本较高,同时也不利于输出。  (2)实现一个生产健壮的 operator 成本非常高,包括接入变更管控 operator 自身的变更三板斧等。  (3)对于网络/磁盘的可用性比较敏感。在输出的场景,会面临比较恶劣的硬件情况,排查成本较高。
- 脆弱的强一致性meta 信息的使用建立在满足强一致性的情况下,如果出现网络问题,例如有 session 网络分区连不上 meta,错误的路由表会导致数据分裂。需要机制确保:即使 meta 信息不一致也能在短时间内维持数据的正确性,留有应急的缓冲时间。


推送正确的数据


当 data 节点大规模运维时,节点列表剧烈变化导致数据不断迁移,推送出去的数据存在完整性/正确性的风险。V5 通过引 3 副本来避免这种情况,只要有一个副本可用,数据就是正确的,但是该限制对运维流程负担很大,我们要确保每次操作少于两个副本或者挑选出满足约束的运维序列。

对于 V5 及之前的版本,运维操作是比较粗糙的,一刀切做停机发布,通过锁 PaaS 禁止业务变更,等 data 节点稳定后,再打开推送能力来确保避免推送错误数据的风险。

此外,预期的运维工作可以这样做,但是对于突发的多 data 节点宕机,这个风险仍然是存在的。

我们需要有机制确保:data 节点列表变化导致数据迁移时,容忍接受额外的轻微推送时延,确保推送数据正确。


「成果」


- meta 存储/选举 组件插件化,站内去 Raft,使用 db 做 leader 选举和存储配置信息,降低运维成本。
- 数据使用固定 slot 分片,meta 提供调度能力,slot 的调度信息通过 slotTable 保存,session/data 节点可容忍该信息的弱一致性,提升鲁棒性。
- 多副本调度减少 data 节点变动时数据迁移的开销,当前线上的数据量 follower 升级 leader 大概 200ms (follower 持有绝大部分的数据),直接分配 leader 数据同步耗时 2s-5s。
- 优化数据通信/复制链路,提升性能和扩展能力。
- 大规模运维不需要深夜锁 PaaS,减少对业务打扰和保住运维人员头发,提升幸福感。


数据链路和 slot 调度:


- slot 分片参考 Redis Cluster 的做法,采用虚拟哈希槽分区,所有的 dataId 根据哈希函数映射到 0 ~ N 整数槽内。
- meta 的 leader 节点,通过心跳感知存活的 data 节点列表,尽可能均匀的把 slot 的多副本分配给 data 节点,相关的映射关系保存在 slotTable,有变更后主动通知给 session/data。
- session/data 同时通过心跳获取最新的 slotTable,避免 meta 通知失效的风险。
- slot 在 data 节点上有状态机 Migrating -> Accept -> Moved。迁移时确保 slot 的数据是最新的才进入 Accept 状态,才可以用于推送,确保推送数据的完整性。
1d69ee665dd75571adf102311057a5ba.webp


data 节点变动的数据迁移:


2864738e0700a4ce2e3c4f425048b8e2.webp


对一个接入 10w+ client 的集群进行推送能力压测,分钟级 12M 的推送量,推送延迟 p999 可以保持在 8s 以下。session cpu20%,data cpu10%,物理资源水位较低,还有较大的推送 buffer。


4ace65804fec2b00761236532b19484b.webp


同时我们也在线上验证横向扩展能力,集群尝试最大扩容到 session*370,data*60,meta*3 ;meta 因为要处理所有的节点心跳,CPU 达到 50%,需要 8C 垂直扩容或者进一步优化心跳开销。按照一个 data 节点的安全水位支撑 200w pub,一个 pub 大概 1.5K 开销,考虑容忍 data 节点宕机 1/3 仍然有服务能力,需要保留 pub 上涨的 buffer,该集群可支撑 1.2 亿的 pub,如果配置双副本则可支撑 6kw 的 pub。



 应用级服务发现 


注册中心对 pub 的格式保留很强的灵活性,部分 RPC 框架实现 RPC 服务发现时,采用一个接口一个 pub 的映射方式,SOFA/HSF/Dubbo2 都是采用这种模式,这种模型比较自然,但是会导致 pub/sub 和推送量膨胀非常厉害。


Dubbo3 提出了应用级服务发现和相关原理【1】。在实现上,SOFARegistry 6.0 参考了 Dubbo3,采用在 session 端集成服务的元数据中心模块的方案,同时在兼容性上做了一些适配。


「应用级服务 pub 数据拆分」


729f0eaefb60da46ee40139ec06bd092.webp


「兼容性」


应用级服务发现的一个难点是如何低成本的兼容接口级/应用级,虽然最后大部分的应用都能升级到应用级,升级过程中会面临以下问题:


- 应用数多,同时各个应用升级到应用级的时间点差距比较大- 部分应用无法升级,例如一些远古应用


我们采用以应用级服务为主,同时兼容接口级的解决方案:


5e1e3cb1092a4fdaa7ec23521bcd05da.webp


在升级时同时存在新旧版本的两个 SOFARegistry,不同版本的 SOFARegistry 对应到不同的域名。升级后的应用端(图中的 MOSN)采用双订阅双发布的方式逐步灰度切换,确保切换过程中,没有升级接入 MOSN 或者没有打开开关的应用不受影响。


在完成绝大多数应用的应用级迁移后,升级后的应用都已经到了 SOFARegistry 6.0 版本的注册中心上,但仍然存在少量应用因为没有接入 MOSN,这些余留的 old app 也通过域名切换到 SOFARegistry 6.0,继续以接口级订阅发布和注册中心交互。为了确保已升级的和没升级的应用能够互相订阅,做了一些支持:


- 提供应用级 Publisher 转接到口级 Publisher 的能力:接口级订阅端是无法直接订阅应用级发布数据的,针对接口级订阅按需从 AppPublisher 转换出 InterfacePublisher,没有接入 MOSN 的应用可以顺利的订阅到这部分数据,因为只有少量应用没有接入 MOSN,需要转化的应用级 Publisher 很少。
- 应用级订阅端在订阅的时候额外发起一个接口级的订阅,用于订阅没有接入升级的应用发布数据。由于这部分应用非常少,实际绝大多数的服务级订阅都不会有推送任务,因此对推送不会造成压力。


「效果」


b1bb3fe5151bb6a5fec119c1facf54c6.webp


上图是一个集群切换应用级后的效果,其中切换后剩余部分接口级 pub 是为了兼容转换出来的数据,接口级 sub 没减少也是为了兼容接口级发布。如果不考虑兼容性,pub 数据减少高达 97%。极大的减轻了数据规模的对集群的压力。



 SOFARegistryChaos:自动化测试 


注册中心的最终一致性的模型一直是个测试难题:


- 最终是多久?- 达到最终前有没有推送错误的数据- 达到最终前有没有推送少数据- 集群发生故障/数据迁移时对数据的正确性和时延的影响- client 端频繁按照各种顺序调用 API 的影响- client 端频繁连接断连的影响


针对该系列问题,我们开发了 SOFARegistryChaos,特别针对最终一致性提供完备的测试能力,除此还提供功能/性能/大规模压测/混沌测试等能力。同时,通过插件化的机制,也支持接入测试其他服务发现产品的能力,基于 K8s 的部署能力,能让我们快速的部署测试组件。


具备以上的能力后,不单可以测试自身的产品能力,例如还可以快速的测试 zookeeper 在服务发现方面的相关性能来做产品比较。


f1f38102269bfa48b5dbbe7a3e1a82b7.webp


测试观测性


提供的关键数据的观测能力,通过 metrics 透出,对接 Prometheus 即可提供可视化能力:


- 推送时延- 设定时间内的最终一致性检测- 发生故障注入的时间点- 最终一致期间推送数据的完整性
该能力的测试是一个比较有意思的创新点,通过固化一部分的 client 和对应的 pub,校验每次其他各种变更导致的推送数据,这部分数据都必须是要完整和正确的。- 推送次数
- 推送数据体积


25649e32a87ad7bddf4adc058b888407.webp


失败 case 的排查


测试场景中,client 操作时序和故障注入都是随机编排的,我们在 SOFARegistryChaos master 端记录和收集了所有的操作命令时序。当 case 失败时,可通过失败的数据明细和各个 client 的 API 调用情况来快速定位问题。


例如下图的失败 case 显示在某个 Node 上的订阅者对某个 dataId 的订阅数据没通过校验,预期是应该要推空, 但是推送了一条数据下来。同时显示了该 dataId 所有相关的 publisher 在测试期间的相关操作轨迹。


2e975d4336988fe55b094c604944b79e.webp


黑盒探测


大家是否经历过类似的 case:


- 突然被业务告知系统出现问题,一脸懵的我:系统没异常啊- 发现系统出现故障时,实际已经对业务造成了严重影响


注册中心因为本身的特性,对业务的影响往往是滞后的,例如 2K 个 IP 只推送了 1K 个,这种错误不会导致业务马上感知到异常。但是实际本身已经出问题了。对于注册中心,更需要有提前发现治末病的能力。


这里我们引入黑盒探测的方式:模拟广义上的用户行为,探测链路是否正常。

SOFARegistryChaos 实际上就可以作为一个注册中心的用户,并且是加强版的,提供端到端的告警能力。


我们把 SOFARegistryChaos 部署到线上,开启小流量作为一个监控项。当注册中心异常但还没对业务造成可感知的影响时,我们有机会及时介入,减少风险事件升级成大故障的风险。


磨刀不误砍柴工


通过 SOFARegistryChaos,核心能力的验证效率极大提升,质量得到保障的同时,开发同学写代码也轻松了许多。从 7 月份到 10 月中的 3 个半月时间里,我们迭代并发布了 5 个版本,接近 3 周 1 个版本。这个开发效率在以前是不敢想象的,同时也获得完善的端到端告警能力。



 运维自动化 


nightly build


虽然我们集群数目非常多,但是因为是区分了多环境,部分环境对于稳定性的要求相对生产流量要求稍微低一些,例如灰度以下的环境。这些环境的集群是否可以在新版本保证质量的情况下,快速低成本的 apply 。结合 SOFARegistryChaos,我们和质量/SRE 的同学正在建设 nightly build 设施。


SOFARegistryChaos 作为变更门禁,新版本自动化的部署,接受 SOFARegistryChaos 的测试通过后,自动化部署到灰度以下的集群,仅在生产发布时候人工介入。


613a926713b22d8856b08ebdd00bba9b.webp


通过 nightly build,极大的减轻非生产环境的发布成本,同时新版本能尽早接受业务流量的检验。


故障演练


虽然我们做了大量的质量相关的工作,但是在线上面对各种故障时究竟表现如何?是骡子还是马,还是要拉出来溜一溜。


我们和 SRE 的同学在线上会定期做故障容灾演练,包括但不限于网络故障;大规模机器宕机等。另外演练不能是一锤子买卖的事情,没有保鲜的容灾能力其实等于 0。在仿真/灰度集群,进行容灾常态化,演练-迭代循环。


0440a2d974bd2935c57e9983a9ed752c.webp


定位诊断


故障容灾演练常态化后,如何快速的定位到故障源成了摆在桌子上的一个问题,否则每次演练都鸡飞狗跳的,效率太低了。

SOFARegistry 各个节点做了大量的可观测性的改进,提供丰富的可观测能力,SRE 的诊断系统通过相关数据做实时诊断,例如这个 case 里就是一个 session 节点故障导致 SLO 破线。有了定位能力后,自愈系统也可以发挥作用,例如某个 session 节点被诊断出网络故障,自愈系统可以触发故障节点的自动化替换。


8fdab3c15b77d9277deb39b8d5e3d5de.webp


目前,我们的容灾演练应急绝大部分 case 已经不需要人肉介入,也只有这样低成本的演练才能常态化。


「收益」


通过不断的演练暴露问题和快速迭代修复,SOFARegistry 的稳定性逐步提升。


「总结」


SOFARegistry 6.0 除了自身的优化,在测试/运维/应急方面做了大量的工作,目标是提升研发/质量/运维人员的效能,让相关同学摆脱低效的人肉工作,提升幸福感。


PART. 4

开源:一个人可以走得很快,

但一群人可以走的更远


SOFARegistry 是一个开源项目,也是开源社区 SOFAStack 重要的一环,我们希望用社区的力量推动 SOFARegistry 的前进,而不是只有蚂蚁集团的工程师去开发。


在过去一年,SOFARegistry 因为重心在 6.0 重构上,社区几乎处于停滞状态,这个是我们做得不够好的地方。


我们制定了未来半年的社区计划,在 12 月份会基于内部版本开源 6.0,开源的代码包含内部版本的所有核心能力,唯一区别是内部版本多了对 confreg-client 的兼容性支持。


affdb567d294d2c61285edd32ebe1aec.webp


另外从 6.1 后,我们希望后继的方案设计/讨论也是基于社区来开展,整个研发进程更透明和开放。


PART. 5

我们仍在路上


2021 年是 SOFARegistry 审视过去,全面夯实基础,提升效能的一年。


当然,我们当前还仍然处在初级阶段,前面还有很长的路要走。例如今年双十一的规模面临一系列非常棘手的问题:


- 一个集群内单应用实例数过多(热点应用单集群高达 7K 个实例)导致业务端收到地址推送时 CPU/memory 开销过大。- 全地址列表推送,导致的连接数过多等。


还有其他的挑战:


- 增量推送,减少推送数据量和 client 端的资源开销- 统一服务发现,支持跨集群- 适应云原生下的新趋势- 社区的运营- 产品易用性


「参 考」


【1】Dubbo3 提出了应用级服务发现和相关原理:

https://dubbo.apache.org/zh/blog/2021/06/02/dubbo3-%E5%BA%94%E7%94%A8%E7%BA%A7%E6%9C%8D%E5%8A%A1%E5%8F%91%E7%8E%B0/



关于我们:


蚂蚁应用服务团队是服务于整个蚂蚁集团的核心技术团队,打造了世界领先的金融级分布式架构的基础设施平台,是 Service Mesh 等云原生领域的领先者,开发运维着全球最大的 Service Mesh 集群,蚂蚁集团的消息中间件每天支撑上万亿的消息流转。


欢迎对 Service Mesh/微服务/服务发现 等领域感兴趣的同学加入我们。


联系邮箱: yuzhi.lyz@antgroup.com



   本周推荐阅读  


bbe0635ca7ee9d52b3eab99afd2d938a.webp

稳定性大幅度提升:SOFARegistry v6 新特性介绍


b3dcaaee2bcb7a566f95abb9500607a5.webp

我们做出了一个分布式注册中心


a6f5ba1ac89736bcd4a3b668b6400189.webp

Prometheus on CeresDB 演进之路


12e4fc080083cc6799ac46dcf049804b.webp

如何在生产环境排查 Rust 内存占用过高问题



浏览 46
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报