图像处理,计算机视觉和人工智能之间的差异
共 6194字,需浏览 13分钟
·
2024-04-19 12:00
作者:Pallawi
原文链接:https://medium.com/@pallawi.ds/difference-between-image-processing-computer-vision-and-artificial-intelligence-af670d65055d
编译:AI算法与图像处理
图像处理
左图像是输入图像,右图像是处理图像
这是我的图像处理代码的链接,它很容易和有趣的尝试自己。https://github.com/PallawiSinghal/AI_Starter/blob/master/image_processing.ipynb
计算机视觉
现在,你希望奖励你的宠物“Shimmy”和“Pluto”作为获胜者和亚军,根据谁在他们的嘴里抓住红苹果或黄色圆盘的最大次数并将它们返回给你在他们各自的轨道上移动 ,左边是“Shimmy”,右边是“Pluto”(游戏规则)。
所以,现在你必须建立一个计算机视觉系统来自动化你的工作。
因此,CV(计算机视觉)系统的第一步应该对350的每个图像进行详细分析。
分析阶段
这项分析的目的是找到一个通用的解决方案,不仅仅是几百个图像,而是多年来的许多图像。
我们在图像中必须寻找的是大多数时候宠物如何出现在图像中的模式。就像这里“Shimmy”在左侧轨道,“Pluto”在右侧。
左图是输入图像,中间图像是掩模(如果你不断看图像一段时间你可以找到从中心到角的强度差异),右图是背景图像(这个背景) 使用非常著名的OpenCV函数“Grabcut”完成删除(前景和背景分割)
第一个图像是上面最右边图像的模糊图像,这里使用的模糊像处理算法,用于边缘保存和噪声消除。第二幅图像是灰度图像。第三图像是阈值图像,也称为二值图像。第四个图像是第三个图像的轮廓图像(简单地说,我们试图在所有颜色为白色的物体上绘制边界,其中也包括宠物),在最后一个图像中,我们通过周长逼近最大轮廓使用凸包,这里最大的轮廓将是宠物的轮廓,并在图像上绘制近似的形状,多边形
左图像是该步骤的输入图像,我们制作近似的小掩模(中心图像)以将宠物多边形转移(也称为翘曲,wrapping)到小图像(中心图像)上。翘曲后的结果看起来像右图
左图是这里的输入,我们使用黄色光盘的小模板图像在此图像上进行模板匹配,如下图所示。模板匹配是一种算法,模板图像从输入图像的顶部到底部移动,输入图像是我们情况下最左边的图像,并在输入图像中找到最佳匹配部分。模板匹配的输出将是中心图像,因为你可以看到图像中最亮和闪亮的部分是黄色光盘所在的位置。因此,我们在最右边的图像上绘制一个框。
模板图片
这是我的计算机视觉代码的链接,你可以轻松有趣地尝试自己
https://github.com/PallawiSinghal/AI_Starter/blob/master/computer_vision.ipynb
人工智能
如果你选择硬阈值来检测“Shimmy”,“Pluto”或黄色圆盘,例如应用半自动分割(OpenCV grab cut),模板匹配,决定宠物应移动的轨道,则此设计的系统可能缺乏可扩展性或宠物身体的颜色阈值。你最终可能会创建一个只能识别“Shimmy”和“Pluto”的有偏见系统。
你将无法将你的CV系统交给世界,以便在不同的狗或猫身上得到相同的结果,因为规则和特征只偏向于“Shimmy”和“Pluto”。
人工智能“救世主”提供图像处理,计算机视觉算法和机器学习算法,以帮助你像魔术一样推广系统。
就像你在教育系统中长大的学习一样,你的老师教你用图像来区分世俗的东西,给你的大脑喂两个输入,一个是图像,第二个是正确的特征描述,它的外观和位置在图片。
同样,如果我们想为上述类比构建一个AI系统,我们需要使用图像处理算法提供预处理的图像,并告诉他们你想要检测的球,圆盘,苹果,狗或任何东西的位置并存在于图像中。
然后,一旦图像和图像的内容,信息被提供给系统,计算机视觉就会出现在图片中。
AI由多层组成,就像一包面包一样,每层运行一个计算机视觉算法,其工作是从图像中提取特征。
在前几层中,我们提取图像上的直线或曲线边缘等低级特征,然后在它学习检测眼睛,苹果,爪子,尾巴以及后来完成的每层中提取所有提取的特征。狗或猫。稍后你将使用这些学习卷积核来预测新数据集上的对象,该数据集也称为测试数据集。
以上图片由https://www.cc.gatech.edu/~hays/compvision/proj6/提供,可以在此处查看图层的外观以及每层的特征提取方式。
当然有数学方程式。但是,让我向你保证,他们很容易,你可以做到。
并且所有的学习都保存在模型中,就像我们的学习保存在我们的大脑中一样,它是通用的,可以用于任何其他数据。
构建AI解决方案的一个非常关键的输入是数据。想象一下,你需要付出的努力才能创造出一个狗在世界各地玩球的数据集(没有差错的数据集)。
因此,综合图像处理,计算机视觉和机器学习三个形成了一个你身边所听到,看到和体验到的人工智能系统。
总结
往期精彩回顾
交流群
欢迎加入机器学习爱好者微信群一起和同行交流,目前有机器学习交流群、博士群、博士申报交流、CV、NLP等微信群,请扫描下面的微信号加群,备注:”昵称-学校/公司-研究方向“,例如:”张小明-浙大-CV“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~(也可以加入机器学习交流qq群772479961)