PyTorch Live:5分钟制作人工智能app
共 2792字,需浏览 6分钟
·
2022-01-23 08:33
新智元报道
新智元报道
编辑:小咸鱼 桃子
【新智元导读】近日,一年一度的PyTorch开发者大会召开。会上,Meta发布了PyTorch Live,这是一套可以为安卓和iOS用户提供人工智能体验的工具。
近日,一年一度的PyTorch开发者大会召开。
在会上,Meta(原名 Facebook)发布了PyTorch Live,这是一套可以为移动端用户提供人工智能体验的工具。
PyTorch Live支持一种编程语言JavaScript,可以为Android和iOS两个移动端操作系统开发应用程序,还能为更广泛的PyTorch社区提供定制机器学习模型的服务。
目前,PyTorch Live已经开源,版本号v0.1.1。
https://github.com/pytorch/live
PyTorch Live开源项目中包括PyTorch Live命令行界面(即torchlive-cli),一个依赖PyTorch Mobile库在移动设备上进行推理的React Native包,以及一个React Native模板,还有一些可以在移动设备上部署的示例。
PyTorch官网声称,PyTorch Live是一个十分易于使用的工具库,使用PyTorch Live可以帮助开发者在几分钟内成功构建一个手机端机器学习演示APP。
PyTorch这些年
2017年1月,Meta 发布了一个基于Torch的开源机器学习库PyTorch。
自2015年以来,TensorFlow一直占据上风,但是PyTorch在发布后也逐渐升温,在开发人员社区中快速普及。
近几年,PyTorch 成为机器学习领域增长最迅猛的开源项目之一。Meta 透露,2019年的时候,该平台的贡献者数量就同比增长超过50% ,增长近1200人。
而基于 PyTorch 中的PyTorch Mobile,PyTorch Live就可以允许开发者在 PyTorch 生态系统中完成从训练模型到部署模型的全过程,而且它还提供了可用于创建可视化用户界面的 React Native 库。
PyTorch Mobile在2019年10月发布,在此之前,Meta发布了Caffe2go,这是一个基于Caffe2机器学习框架,并针对移动端CPU和GPU进行特别优化的全新框架。
值得一提的是,不管开发人员想在移动设备或是其他边缘设备上运行PyTorch Mobile,都是可以的。甚至PyTorch Mobile也可以运行在服务器上。
Meta AI 软件工程师 Roman Radle表示,「如果你想展示一个运行在 Android 和 iOS 移动端上的模型,就需要花费数天时间来配置项目和构建用户界面。有了 PyTorch Live,开发成本降低了一半,而且你也不需要有太多Android开发和iOS开发的经验 」。
PyTorch Live内置工具
目前,PyTorch Live的beta测试版只支持苹果macOS操作系统。不过,对Windows和Linux系统的支持很快也会有。
PyTorch Live有几个依赖包需要先安装。
一个是Node.js。如果还没有装Node.js的话,可以从Node.js官方网站下载或者通过Homebrew安装(即brew install node)。
另外一个是Xcode。如果想在iOS模拟器或iOS设备上运行PyTorch Live应用,就需要从苹果应用商店安装Xcode。PyTorch Live目前支持Xcode 12.5或更高版本。
在开发过程中,配置环境可能是个既繁琐又困难的事。
PyTorch Live提供了一个安装例程,可以自动安装所需的依赖项。它将自动尝试安装以下库和工具:
Homebrew OpenJDK Yarn Watchman Android Command Line Tools Android SDK Android SDK Manager Android Virtual Device Manager Android Emulator CocoaPods
1.图像分类
2.目标检测
3.手写数字识别
参考资料:
猜您喜欢:
附下载 |《TensorFlow 2.0 深度学习算法实战》