5分钟玩转PyTorch | 熟练掌握Tensor的基本操作

Python绿色通道

共 7903字,需浏览 16分钟

 ·

2021-12-02 12:12

AI因你而升温,记得加个星标哦!

↑ 关注 + 星标 ,每天学Python新技能

后台回复【大礼包】送你Python自学大礼包

前几节介绍了张量的创建、维度、索引、视图等常用操作与基本概念,本文就对以上内容进行浓缩总结,帮助大家熟练掌握Tensor的使用技巧!

一、张量的创建与类型

张量最基本创建方法和Numpy中创建Array的格式一致,都是创建函数的格式。

1.1 通过列表创建

t = torch.tensor([12])
print(t)
# tensor([1, 2])

1.2 通过元组创建

t = torch.tensor((12))
print(t)
# tensor([1, 2])

1.3 通过Numpy创建

import numpy as np
n = np.array([12])
t = torch.tensor(n)
print(t)
# tensor([1, 2])

1.4 张量的类型

type()不能识别出Tensor内部的数据类型,只能识别出变量的基本类型是Tensor,而dtype方法可以识别出变量具体为哪种类型的Tensor

i = torch.tensor([12])
f = torch.tensor([1.02.0])
print(type(i), i.dtype, sep = ' , ')
print(type(f), f.dtype, sep = ' , ')
 , torch.int64
 , torch.float32

1.5 张量类型的转化方法

可以使用.float().int()等方法对张量类型进行转化。

t = torch.tensor([12])
f = t.float()
print(f)
print(t)
# tensor([1., 2.])
# tensor([1, 2])

需要注意的是,这里并不会改变原来t的数据类型。

二、张量的维度

张量的维度中,我们使用的张量如下:

# 一维向量
t1 = torch.tensor((1, 2))
# 二维向量
t2 = torch.tensor([[1, 2, 3], [4, 5, 6]])
# 三维向量
t3 = torch.tensor([[[1, 2], [3, 4]],[[5, 6], [7, 8]]])

2.1 ndim查看张量维度

print(t1.ndim, t2.ndim, t3.ndim, sep = ', ')
# 1, 2, 3
# t1为1维向量
# t2为2维矩阵
# t3为3维张量

2.2 shape&size查看向量的形状

print(t1.shape, t2.shape, t3.shape, sep = ', ')
# torch.Size([2]), torch.Size([2, 3]), torch.Size([2, 2, 2])

print(t1.size(), t2.size(), t3.size(), sep = ', ')
# torch.Size([2]), torch.Size([2, 3]), torch.Size([2, 2, 2])

t1向量torch.Size([2])的理解:向量的形状是1行2列。

t2矩阵torch.Size([2, 3])的理解:包含两个一维向量,每个一维向量的形状是1行3列。

t3矩阵torch.Size([2, 2, 2])的理解:包含两个二维矩阵,每个二维矩阵的形状是2行2列。

2.3 numel查看张量中的元素个数

print(t1.numel(), t2.numel(), t3.numel(), sep = ', ')
# 2, 6, 8
# t1向量中共有2个元素
# t2矩阵中共有6个元素
# t3张量中共有8个元素

2.4 flatten将任意维度张量转为一维张量

t2.flatten()
# tensor([1, 2, 3, 4, 5, 6])

t3.flatten()
# tensor([1, 2, 3, 4, 5, 6, 7, 8])

2.5 reshape任意变形

形变维度的乘积需要等于张量元素的个数。

# 将`t3`变成2×4的矩阵
t3.reshape(2, 4)
#tensor([[1, 2, 3, 4],[5, 6, 7, 8]])

# 将`t3`变成1×4×2的矩阵
t3.reshape(1, 4, 2)
# tensor([[[1, 2], [3, 4], [5, 6], [7, 8]]])

2.6 squeeze&unsqueeze

  • squeeze的作用是压缩张量,去掉维数为1位置的维度
# 将t3的维度变为2×1×4
t_214 = t3.reshape(2, 1, 4)
print(t_214)
# tensor([[[1, 2, 3, 4]], [[5, 6, 7, 8]]])

# 使用squeeze将其变成2×4,去掉维度为1位置的维度
t_24 = t_214.squeeze(1)
print(t_24)
# tensor([[1, 2, 3, 4], [5, 6, 7, 8]])
  • unsqueeze的作用是解压张量,给指定位置加上维数为一的维度。
# 将2×4的维度再转换成2×1×4,在第二个维度上加一维
# 索引是从0开始的。参数0代表第一维,参数1代表第二维,以此类推
print(t_24.unsqueeze(1))
tensor([[[1, 2, 3, 4]], [[5, 6, 7, 8]]])

2.7 特殊的零维张量

Tensor的零维张量只包含一个元素,可以理解为标量,只有大小,没有方向。

# 零维张量的创建只有一个数,不具备一维或多维的概念
t0 = torch.tensor(1)

# 因为它是标量,所以维度是0
print(t0.ndim)
# 0

# 因为它是标量,所以也不具有形状
print(t0.shape)
# torch.Size([])

# 它没有维度,但是有一个数
print(t0.numel())
# 1

2.8 .item():标量转化为数值

在很多情况下,我们需要将最终计算的结果张量转为单独的数值进行输出。

n = torch.tensor(1)
print(n)
# tensor(1)

# 使用.item()方法将标量转为python中的数值
n.item()
# 1

2.8 什么是张量

Tensor是一个多维数组,它是标量、向量、矩阵的高维拓展。

三、张量的索引

3.1 张量的符号索引

张量是有序序列,我们可以根据每个元素在系统内的顺序位置,来找出特定的元素,也就是索引。

一维张量索引与Python中的索引一样是是从左到右,从0开始的,遵循格式为[start: end: step]

t1 = torch.arange(1, 11)
t1
# tensor([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])

# 取出索引位置是0的元素
t1[0]
# tensor(1)

:张量索引出的结果是零维张量,而不是单独的数。要转化成单独的数还需使用上节介绍的item()方法。

可理解为构成一维张量的是零维张量,而不是单独的数。

3.2 张量的step必须大于0

但在张量中,step必须大于1,否则就会报错。

t1 = torch.arange(1, 11)
t1[ ::-1]
# ValueError: step must be greater than zero

3.3 二维张量的索引

二维张量的索引逻辑和一维张量的索引逻辑相同,二维张量可以视为两个一维张量组合而成。

t2 = torch.arange(1, 17).reshape(4, 4)
t2
#tensor([[ 1,  2,  3,  4],
#        [ 5,  6,  7,  8],
#        [ 9, 10, 11, 12],
#        [13, 14, 15, 16]])

t2[0,1]也可用t2[0][1]的表示。

# 表示索引第一行、第二个(第二列的)元素
t2[0, 1]
# tensor(2)

t2[0][1]
# tensor(2)

但是t2[::2, ::2]t2[::2][ ::2]的索引结果就不同:

t2[::2, ::2]
# tensor([[ 1,  3],
#        [ 9, 11]])

t2[::2][::2]
# tensor([[1, 2, 3, 4]])

t2[::2, ::2]二维索引使用逗号隔开时,可以理解为全局索引,取第一行和第三行的第一列和第三列的元素。

t2[::2][::2]二维索引在两个中括号中时,可以理解为先取了第一行和第三行,构成一个新的二维张量,然后在此基础上又间隔2并对所有张量进行索引。

tt = t2[::2]
# tensor([[ 1,  2,  3,  4],
#         [ 9, 10, 11, 12]])
tt[::2]
# tensor([[1, 2, 3, 4]])

3.4 三维张量的索引

设三维张量的shapex、y、z,则可理解为它是由x个二维张量构成,每个二维张量由y个一维张量构成,每个一维张量由z个标量构成。

t3 = torch.arange(1, 28).reshape(3, 3, 3)
t3
# tensor([[[ 1,  2,  3],
#         [ 4,  5,  6],
#         [ 7,  8,  9]],

#         [[10, 11, 12],
#         [13, 14, 15],
#         [16, 17, 18]],

#         [[19, 20, 21],
#         [22, 23, 24],
#         [25, 26, 27]]])

# 索引第二个矩阵中的第二行、第二个元素
t3[1, 1, 1]
# tensor(14)

# 索引第二个矩阵,行和列都是每隔两个取一个
t3[1, ::2, ::2]
# tensor([[10, 12],
#         [16, 18]])

高维张量的思路与低维一样,就是围绕张量的“形状”进行索引。

3.5 张量的函数索引

PyTorch中,我们还可以使用index_select函数指定index来对张量进行索引,index的类型必须为Tensor

  • index_select(dim, index)表示在张量的哪个维度进行索引,索引的位值是多少。
t1 = torch.arange(1, 11)
indices = torch.tensor([1, 2])
# tensor([1, 2])
t1.index_select(0, indices)
# tensor([2, 3])

:这里取出的是位置,而不是取出[1:2]区间内左闭右开的元素。

3.6 二维张量的函数索引

t2 = torch.arange(12).reshape(4, 3)
t2
# tensor([[ 0,  1,  2],
#         [ 3,  4,  5],
#         [ 6,  7,  8],
#         [ 9, 10, 11]])

t2.shape
# torch.Size([4, 3])

indices = torch.tensor([1, 2])
t2.index_select(0, indices)
# tensor([[3, 4, 5],
#         [6, 7, 8]])

此时dim参数取值为0,代表在shape的第一个维度上进行索引,即在向量维度进行索引。

PyTorch中很多函数都采用的是第几维的思路,后面会介绍给大家,大家还需勤加练习,适应这种思路。同时使用函数式索引,在习惯后对代码可读性会有很大提升。

在此,我强烈建议阅读:干货|深入理解数据的维度,读后你一定会对维度有新的认识,与维度相关的操作都能信手捏来。

四、张量的合并与分割

4.1 张量的分割

chunk(tensor, chunks, dim)能够按照某个维度dim对张量进行均匀切分chunks,并且返回结果是原张量的视图。

还不了解视图的同学,点击进行学习

# 创建一个4×3的矩阵
t2 = torch.arange(12).reshape(43)
t2
# tensor([[ 0,  1,  2],
#        [ 3,  4,  5],
#        [ 6,  7,  8],
#        [ 9, 10, 11]])

在第0个维度(shape的第一个数字,代表向量维度)上将t2进行4等分:

# 在矩阵中,第一个维度是行,理解为shape的第一个数
tc = torch.chunk(t2, chunks = 4, dim = 0)
tc
# (tensor([[0, 1, 2]]),
#  tensor([[3, 4, 5]]),
#  tensor([[6, 7, 8]]),
#  tensor([[ 9, 10, 11]]))

根据结果可见:

  1. 返回结果是一个元组,不可变
tc[0] = torch.tensor([[111]])
# TypeError: 'tuple' object does not support item assignment
  1. 元组中的每个值依然是一个二维张量
tc[0]
# tensor([[0, 1, 2]])
  1. 返回的张量tc的一个视图,不是新成了一个对象
# 我们将原张量t2中的数值进行更改
t2[0] = torch.tensor([666])
# 再打印分块后tc的结果
tc
# (tensor([[6, 6, 6]]),
#  tensor([[3, 4, 5]]),
#  tensor([[6, 7, 8]]),
#  tensor([[ 9, 10, 11]]))

若原张量不能均分时,chunk不会报错,会返回次一级均分结果。

# 创建一个4×3的矩阵
t2 = torch.arange(12).reshape(43)
t2
# tensor([[ 0,  1,  2],
#        [ 3,  4,  5],
#        [ 6,  7,  8],
#        [ 9, 10, 11]])

将4行分为3等份,不可分,就会返回2等分的结果:

tc = torch.chunk(t2, chunks = 3, dim = 0)
tc
# (tensor([[0, 2, 2],
#          [3, 4, 5]]), 
#  tensor([[ 6,  7,  8],
#          [ 9, 10, 11]]))

4.2 split函数

split既能进行均分,也能进行自定义切分。需要注意的是split的返回结果也是视图。

# 第二个参数只输入一个数值时表示均分
# 第三个参数表示切分的维度
torch.split(t2, 2, dim = 0)
# (tensor([[0, 1, 2],
#          [3, 4, 5]]), 
#  tensor([[ 6,  7,  8],
#          [ 9, 10, 11]]))

chunk函数不同的是,split第二个参数可以输入一个序列,表示按照序列数值等分:

torch.split(t2, [1,3], dim = 0)
# (tensor([[0, 1, 2]]), 
#  tensor([[ 3,  4,  5],
#          [ 6,  7,  8],
#          [ 9, 10, 11]]))

当第二个参数输入一个序列时,序列的各数值的和必须等于对应维度下形状分量的取值,即shape对应的维度。

例如上述代码中,是按照第一个维度进行切分,而t2总共有4行,因此序列的求和必须等于4,也就是1+3=4,而序列中每个分量的取值,则代表切块大小。

4.3 张量的拼接cat

这里一定要将dim参数与shape返回的结果相对应理解。

a = torch.zeros(23)
a
# tensor([[0., 0., 0.],
#         [0., 0., 0.]])

b = torch.ones(23)
b
# tensor([[1., 1., 1.],
#         [1., 1., 1.]])

因为在张量ab中,shape的第一个位置是代表向量维度,所以当dim取0时,就是将向量进行合并,向量中的标量数不变:

torch.cat([a, b], dim = 0)
# tensor([[0., 0., 0.],
#         [0., 0., 0.],
#         [1., 1., 1.],
#         [1., 1., 1.]])

dim取1时,shape的第二个位置是代表列,即标量数,就是在列上(标量维度)进行拼接,行数(向量数)不变:

torch.cat([a, b], dim = 1)
# tensor([[0., 0., 0., 1., 1., 1.],
##        [0., 0., 0., 1., 1., 1.]])

dimshape结合理解,是不是清晰明了了?

4.4 张量的堆叠stack

和拼接不同,堆叠不是将元素拆分重装,而是将各参与堆叠的对象分装到一个更高维度的张量里。

a = torch.zeros(23)
a
# tensor([[0., 0., 0.],
#         [0., 0., 0.]])

b = torch.ones(23)
b
# tensor([[1., 1., 1.],
#         [1., 1., 1.]])

堆叠之后,生成一个三维张量:

torch.stack([a, b], dim = 0)
# tensor([[[0., 0., 0.],
#          [0., 0., 0.]],
#         [[1., 1., 1.],
#          [1., 1., 1.]]])

torch.stack([a, b], dim = 0).shape
# torch.Size([2, 2, 3])

此例中,就是将两个维度为1×2×3的张量堆叠为一个2×2×3的张量。

4.5 catstack的区别

拼接之后维度不变,堆叠之后维度升高。拼接是把一个个元素单独提取出来之后再放到二维张量里,而堆叠则是直接将两个二维向量封装到一个三维张量中。因此,堆叠的要求更高,参与堆叠的张量必须形状完全相同。

4.6 python中的拼接和堆叠

a = [1, 2]
b = [3, 4]

cat拼接操作与listextend相似,不会改变维度,只会在已有框架内增加元素:

a.extend(b)
a
# [1, 2, 3, 4]

stack堆叠操作与listappend相似,会改变维度:

a = [1, 2]
b = [3, 4]
a.append(b)
a
# [1, 2, [3, 4]]


推荐阅读

  1. 伤害性不大,侮辱性极强的瞬间

  2. JupyterLab 这插件太强了,Excel灵魂附体

  3. Python,yyds!

  4. 终于,Python 也可以写前端了


浏览 52
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报