卷起来,浅析堆排序算法!

程序源代码

共 2449字,需浏览 5分钟

 ·

2021-11-27 02:38


堆这种数据结构应用场景很多,最经典的莫过于堆排序。堆排序(Heap Sort)是一种原地的、时间复杂度为O(nlogn)的排序算法。我们今天就来分析一下堆排序。

一、算法描述

堆排序按照从小到大的顺序进行排序的步骤如下:

1. 将长度为 n 的序列构造成为一个大顶堆

2. 将根结点与序列最后一个结点进行交换,此时最后一个结点就是该序列的最大值

3. 将剩余的 n - 1 个结点再次构造成为一个大顶堆;

4. 重复步骤 2、3,直到构造成一个完全有序的序列。

堆需要满足两个条件:

  1. 是一颗完全二叉树(Complete Binary Tree)


  2. 堆上面的每一个节点都必须满足父结点的值大于等于子结点的值或者父结点的值小于等于子结点的值 。parent >= children or parent <= children

二、完全二叉树

一棵深度为 k 的有 n 个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为 i(1≤i≤n)的结点与满二叉树中编号为 i 的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。

举个栗子:

满二叉树:

深度为 k 且有 2^k-1 个结点的二叉树称为满二叉树。


完全二叉树:

树中含有 n 个结点和满二叉树中编号为 1 至 n 的结点一一对应。


三、大顶堆和小顶堆

堆又分为大顶堆和小顶堆。

大顶堆:

完全二叉树且每个父节点都大于等于它的两个子结点时,就称为大顶堆

公式定义:

arr[i] >= arr[2i+1] 
arr[i] >= arr[2i+2]  

小顶堆:

完全二叉树每个父节点都小于等于它的两个子结点时,就称为小顶堆

公式定义:

arr[i] <= arr[2i+1]
arr[i] <= arr[2i+2]  


四、堆的性质

例如我们已经有一个大顶堆,那么这个大顶堆具有哪些特征呢?



将其映射为数组:


int arr[] = {12,10,9,6,7,8,5,3,2}



我们假设结点 6 的位置为 i = 3。那么我们可以求出,他的父节点和两个子结点


Parent = ( i - 1 )  /  2,等于位置为 1 的结点 10。


C1 = 2i + 1,等于位置为 7 的结点 3 。


C2 = 2i + 2,等于位置为 8 的结点 2 。

五、图解堆排序算法

我们以 int tree[] = {6, 10, 3, 8, 5, 12, 7, 2, 9} 为例,对堆排序的执行过程进行图解。


第一步:通过原始序列构造一个大顶堆(升序采用大顶堆,降序采用小顶堆)。


1. 先通过序列通过从上到下从左往右的顺序构造一个完全二叉树



2.  对第三层的父节点和第四层的子结点进行调整,其中粉红色代表发生交换的结点。使得其父节点大于两个子结点。


即也是从最后 1 个非叶子结点开始 (8 - 1) / 2 = 3, 也就是从 8 开始进行从左到右从下到上进行调整。


[8,2,9] 中,9 最大,交换 8 和 9。



3. 对第二层父节点和第三层子结点进行调整。


[10,9,5] 中,10 最大,不交换。


[3,12,7] 中,12 最大,交换 3 和 12。



4. 对第一层父节点和第二层子结点进行调整。


[6,10,12] 中,12 最大,交换 6 和 12。



这时,上面操作导致 [6,3,7] 不是一个大顶堆,继续调整。


[6,3,7] 中,7 最大,交换 6 和 7。



至此,大顶堆构建完成。


第二步:将根结点调整到最后一个位置,使末尾元素最大。然后对剩下元素继续调整堆,根结点调整到最后一个位置,得到第二大元素。如此反复进行交换、重够、交换。


1. 将根节点元素 12 跟 8 交换。



2. 重新调整结构,使其继续满足堆定义。



3. 将根节点元素 10 跟 2 交换。



4. 重新调整结构,使其继续满足堆定义。



这样一直交换、重够、交换下去.......


5.最后一次将根节点元素 3 跟 2 交换。



这样所有元素就达到了有序状态。


六、算法实现

第一步:构建大顶堆


#include 

void swap(int arr[], int i, int j){
  int temp = arr[i];
  arr[i] = arr[j];
  arr[j] = temp;
}

void heapify(int tree[], int n, int i){
  if (i >= n){
    return;
  }
  
  int c1 = 2 * i + 1;
  int c2 = 2 * i + 2;
  int max = i;
  if (c1 < n && tree[c1] > tree[max]){
    max = c1;
  }
  if (c2 < n && tree[c2] > tree[max]){
    max = c2;
  }
  if (max != i){
    swap(tree, max ,i);
    heapify(tree, n, max);
  }
}

void build_heap(int tree[], int n){
  int last_node = n - 1;
  int parent = (last_node - 1) / 2;
  for (int i = parent; i >= 0; i--){
    heapify(tree, n, i);
  }
}

void heap_sort(int tree[], int n){
  build_heap(tree, n);
  for (int i = n - 1; i >= 0; i--){
    swap(tree, i, 0);
    heapify(tree, i, 0);
  }
}

int main(){
  int tree[] = {6, 10, 3, 9, 5, 12, 7, 2, 8};
  int n = 9;
  
  build_heap(tree, 9);
// heap_sort(tree, 9);
  
  for(int i = 0; i < n; i++){
    printf("%d\n",tree[i]);
  }
  return 0;
}


输出:



我们将它画出来康康:



看是不是一颗大顶堆?那必须是呀。

第二步:排序


#include 

void swap(int arr[], int i, int j){
  int temp = arr[i];
  arr[i] = arr[j];
  arr[j] = temp;
}

void heapify(int tree[], int n, int i){
  if (i >= n){
    return;
  }
  
  int c1 = 2 * i + 1;
  int c2 = 2 * i + 2;
  int max = i;
  if (c1 < n && tree[c1] > tree[max]){
    max = c1;
  }
  if (c2 < n && tree[c2] > tree[max]){
    max = c2;
  }
  if (max != i){
    swap(tree, max ,i);
    heapify(tree, n, max);
  }
}

void build_heap(int tree[], int n){
  int last_node = n - 1;
  int parent = (last_node - 1) / 2;
  for (int i = parent; i >= 0; i--){
    heapify(tree, n, i);
  }
}

void heap_sort(int tree[], int n){
  build_heap(tree, n);
  for (int i = n - 1; i >= 0; i--){
    swap(tree, i, 0);
    heapify(tree, i, 0);
  }
}

int main(){
  int tree[] = {6, 10, 3, 9, 5, 12, 7, 2, 8};
  int n = 9;
  
// build_heap(tree, 9);
  heap_sort(tree, 9);
  
  for(int i = 0; i < n; i++){
    printf("%d\n",tree[i]);
  }
  return 0;
}


输出:


我们将它画出来康康:



就这样我们就完成堆排序啦!开不开森。


六、算法分析

时间复杂度堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n),排序过程的时间复杂度是 O(nlogn),所以,堆排序整体的时间复杂度是 O(nlogn)


空间复杂度 因为堆排序是就地排序,空间复杂度为常数:O(1)


稳定性:不稳定。因为在堆的调整过程中,元素进行比较和交换所走的是该结点到叶子结点的一条路径,因此对于相同的元素就可能出现排在后面的元素被交换到前面来的情况。 

七、适用场景

堆排序在建立堆和调整堆的过程中会产生比较大的开销,在元素少的时候并不适用。但是,在元素比较多的情况下,还是不错的一个选择。尤其是在解决诸如“前n大的数”一类问题时,几乎是首选算法。


如果觉得写的不错,点赞 + 在看来一个
浏览 29
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报