【推荐】新冠肺炎的最新数据集和可视化和预测分析(附代码)
机器学习初学者
共 3006字,需浏览 7分钟
·
2020-11-14 17:23
新冠肺炎现在情况怎么样了?推荐Github标星24.7K+的新冠肺炎公开数据集,利用这个数据集,可以用代码进行简单地可视化及预测。
推荐新冠肺炎的公开数据集:
https://github.com/CSSEGISandData/COVID-19
数据可视化:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
数据集能做什么?
这个数据集可以做以下分析:
全球趋势 国家(地区)增长 省份情况 美国 欧洲 亚洲 什么时候会收敛?进行预测
简单演示
数据来源
数据来源:
World Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC):
http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtmlChina CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus 1Point3Arces: https://coronavirus.1point3acres.com/en WorldoMeters: https://www.worldometers.info/coronavirus/ COVID Tracking Project: https://covidtracking.com/data. (US Testing and Hospitalization Data. We use the maximum reported value from "Currently" and "Cumulative" Hospitalized for our hospitalization number reported for each state.) French Government: https://dashboard.covid19.data.gouv.fr/ COVID Live (Australia): https://www.covidlive.com.au/ Washington State Department of Health: https://www.doh.wa.gov/emergencies/coronavirus Maryland Department of Health: https://coronavirus.maryland.gov/ New York State Department of Health: https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Testing/xdss-u53e/data NYC Department of Health and Mental Hygiene: https://www1.nyc.gov/site/doh/covid/covid-19-data.page and https://github.com/nychealth/coronavirus-data Florida Department of Health Dashboard: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19_Cases/FeatureServer/0 and https://fdoh.maps.arcgis.com/apps/opsdashboard/index.html#/8d0de33f260d444c852a615dc7837c86
总结
本文推荐新冠肺炎的公开数据集,利用这个数据集,可以用代码进行简单地可视化及预测。
数据集地址:
https://github.com/CSSEGISandData/COVID-19
数据预测代码:
https://www.kaggle.com/corochann/covid-19-current-situation-on-october?scriptVersionId=45297457
(数据请从数据集地址下载最新)
往期精彩回顾
获取本站知识星球优惠券,复制链接直接打开:
https://t.zsxq.com/y7uvZF6
本站qq群704220115。
加入微信群请扫码:
评论