数学 | 暴力破解还给人美感的证明!
共 1546字,需浏览 4分钟
·
2021-09-14 10:08
日期:2021年9月8日
正文共:1392字8图
预计阅读时间:4分钟
来源:算法与数学之美
1.最经典的“无字证明”
1989 年的《美国数学月刊》(American Mathematical Monthly)上有一个貌似非常困难的数学问题:下图是由一个个小三角形组成的正六边形棋盘,现在请你用右边的三种(仅朝向不同的)菱形把整个棋盘全部摆满(图中只摆了其中一部分),证明当你摆满整个棋盘后,你所使用的每种菱形数量一定相同。
文章末尾提供了一个非常帅的“证明”。把每种菱形涂上一种颜色,整个图形瞬间有了立体感,看上去就成了一个个立方体在墙角堆叠起来的样子。三种菱形分别是从左侧、右侧、上方观察整个立体图形能够看到的面,它们的数目显然应该相等。
严格地说,这个本来不算数学证明的。但它把一个纯组合数学问题和立体空间图形结合在了一起,实在让人拍案叫绝。因此,这个问题及其鬼斧神工般的“证明”流传甚广,深受数学家们的喜爱。《最迷人的数学趣题——一位数学名家精彩的趣题珍集》(Mathematical Puzzles: A Connoisseur's Collection)一书的封皮上就赫然印着这个经典图形。在数学中,类似的流氓证明数不胜数,不过上面这个可能算是最经典的了。
2.旋轮线的面积
车轮在地上旋转一圈的过程中,车轮圆周上的某一点划过的曲线就叫做“旋轮线”。在数学和物理中,旋轮线都有着非常重要而优美的性质。比如说,一段旋轮线下方的面积恰好是这个圆的面积的三倍。这个结论最早是由伽利略(Galileo Galilei,1564-1642)发现的。不过,在没有微积分的时代,计算曲线下方的面积几乎是一件不可能完成的任务。伽利略是如何求出旋轮线下方的面积的呢?
他的方法简单得实在是出人意料:它在金属板上切出旋轮线的形状,拿到秤上称了称,发现重量正好是对应的圆形金属片的三倍。
在试遍了各种数学方法却都以失败告终之后,伽利略果断地耍起了流氓,用物理实验的方法测出了图形的面积。用物理实验解决数学问题也不是一件稀罕事了,广义费马点(generalized Fermat point)问题就能用一套并不复杂的力学系统解出,施泰纳问题(Steiner tree problem)也可以用肥皂膜实验瞬间秒杀。
3.欧拉的流氓证明法
在数学史上,很多漂亮的定理最初的证明都是错误的。最典型的例子可能就是 1735 年大数学家欧拉(Euler)的“证明”了。他曾经仔细研究过所有完全平方数的倒数和的极限值,并且给出了一个漂亮的解答:
这是一个出人意料的答案,圆周率 π 毫无征兆地出现在了与几何完全没有关系的场合中。欧拉的证明另辟蹊径,采用了一种常人完全想不到的绝妙方法。他根据方程 sin(x)/x = 0 的解,对 sin(x)/x 的级数展开进行因式分解,再利用对比系数的方法神奇地得到了问题的答案。不过,利用方程的解进行因式分解的方法只适用于有限多项式,在当时的数学背景下,这种方法不能直接套用到无穷级数上。虽然如此,欧拉利用这种不严格的类比,却得出了正确的结果。欧拉大师耍了一个漂亮的流氓。
- End - -
更多精彩:
☞ 一文读懂欧拉函数