附pdf下载 | 中文版《可解释的机器学习》
小白学视觉
共 754字,需浏览 2分钟
·
2021-01-06 05:08
可解释性是当下机器学习研究特点之一。最近,来自复旦大学的研究生朱明超,将《Interpretable Machine Learning》翻译成了中文。本文推介由朱明超同学亲自撰写。
这本书最初是由德国慕尼黑大学博士Christoph Molnar耗时两年完成的,长达250页,是仅有的一本系统介绍可解释性机器学习的书籍。
这本书最初是由Christoph Molnar耗时两年完成的《Interpretable Machine Learning》,长达250页,在公开至今该书得到密切关注,这是在可解释性领域可以找到的仅有的一本书。
“可解释”是这本书的核心论题。作者Molnar认为,可解释性在机器学习甚至日常生活中都是相当重要的一个问题。建议机器学习从业者、数据科学家、统计学家和任何对使机器学习模型可解释的人阅读本书。
《可解释的机器学习》该书总共包含 7 章内容。章节目录如下:
第一章:前言
第二章:可解释性
第三章:数据集
第四章:可解释的模型
第五章:模型无关方法
第六章:基于样本的解释
第七章:水晶球
扫下面码关注【深度学习初学者】回复:解释 ,即可获取电子版。
评论