60分钟入门PyTorch
极市导读
本文从最基础的张量开始介绍,然后介绍了非常重要的自动求梯度的 autograd ,接着介绍如何构建一个神经网络,如何训练图像分类器,最后简单介绍使用多 GPUs 加快训练速度的方法。 >>加入极市CV技术交流群,走在计算机视觉的最前沿
PyTorch 是由 Facebook 开发,基于 Torch 开发,从并不常用的 Lua 语言转为 Python 语言开发的深度学习框架,Torch 是 TensorFlow 开源前非常出名的一个深度学习框架,而 PyTorch 在开源后由于其使用简单,动态计算图的特性得到非常多的关注,并且成为了 TensorFlow 的 最大竞争对手。目前其 Github 也有 2w8+ 关注。
Github 地址:https://github.com/pytorch/pytorch
官网:https://pytorch.org/
论坛:https://discuss.pytorch.org/
本文是翻译自官方版教程--DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ,一份 60 分钟带你快速入门 PyTorch 的官方教程。
(ps. 文末有最新的更新,介绍了深度学习的入门资料推荐、PyTorch 的教程推荐,如果阅读本文后还是有些困难的,可以看看文末推荐的深度学习书籍和教程,先入门深度学习,有一定基础再学习 PyTorch,效果会更好!)
本文目录如下:
1. Pytorch 是什么
Pytorch 是一个基于 Python 的科学计算库,它面向以下两种人群:
希望将其代替 Numpy 来利用 GPUs 的威力; 一个可以提供更加灵活和快速的深度学习研究平台。
1.1 安装
pytorch 的安装可以直接查看官网教程,如下所示,官网地址:https://pytorch.org/get-started/locally/
根据提示分别选择系统(Linux、Mac 或者 Windows),安装方式(Conda,Pip,LibTorch 或者源码安装)、使用的编程语言(Python 2.7 或者 Python 3.5,3.6,3.7 或者是 C++),如果是 GPU 版本,就需要选择 CUDA 的 版本,所以,如果如上图所示选择,安装的命令是:
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
这里推荐采用 Conda 安装,即使用 Anaconda,主要是可以设置不同环境配置不同的设置,关于 Anaconda 可以查看我之前写的 Python 基础入门--简介和环境配置。
当然这里会安装最新版本的 Pytorch,也就是 1.1 版本,如果希望安装之前的版本,可以点击下面的网址:
http://pytorch.org/get-started/previous-versions/
如下图所示,安装 0.4.1 版本的 pytorch,在不同版本的 CUDA 以及没有 CUDA 的情况。
然后还有其他的安装方式,具体可以自己点击查看。
安装后,输入下列命令:
from __future__ import print_function
import torch
x = torch.rand(5, 3)
print(x)
输出结果类似下面的结果即安装成功:
tensor([[0.3380, 0.3845, 0.3217],
[0.8337, 0.9050, 0.2650],
[0.2979, 0.7141, 0.9069],
[0.1449, 0.1132, 0.1375],
[0.4675, 0.3947, 0.1426]])
然后是验证能否正确运行在 GPU 上,输入下列代码,这份代码中 cuda.is_available()
主要是用于检测是否可以使用当前的 GPU 显卡,如果返回 True,当然就可以运行,否则就不能。
import torch
torch.cuda.is_available()
1.2 张量(Tensors)
Pytorch 的一大作用就是可以代替 Numpy 库,所以首先介绍 Tensors ,也就是张量,它相当于 Numpy 的多维数组(ndarrays)。两者的区别就是 Tensors 可以应用到 GPU 上加快计算速度。
首先导入必须的库,主要是 torch
from __future__ import print_function
import torch
1.2.1 声明和定义
首先是对 Tensors 的声明和定义方法,分别有以下几种:
torch.empty(): 声明一个未初始化的矩阵。
# 创建一个 5*3 的矩阵
x = torch.empty(5, 3)
print(x)
输出结果如下:
tensor([[9.2737e-41, 8.9074e-01, 1.9286e-37],
[1.7228e-34, 5.7064e+01, 9.2737e-41],
[2.2803e+02, 1.9288e-37, 1.7228e-34],
[1.4609e+04, 9.2737e-41, 5.8375e+04],
[1.9290e-37, 1.7228e-34, 3.7402e+06]])
torch.rand():随机初始化一个矩阵
# 创建一个随机初始化的 5*3 矩阵
rand_x = torch.rand(5, 3)
print(rand_x)
输出结果:
tensor([[0.4311, 0.2798, 0.8444],
[0.0829, 0.9029, 0.8463],
[0.7139, 0.4225, 0.5623],
[0.7642, 0.0329, 0.8816],
[1.0000, 0.9830, 0.9256]])
torch.zeros():创建数值皆为 0 的矩阵
# 创建一个数值皆是 0,类型为 long 的矩阵
zero_x = torch.zeros(5, 3, dtype=torch.long)
print(zero_x)
输出结果如下:
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
类似的也可以创建数值都是 1 的矩阵,调用 torch.ones
torch.tensor():直接传递 tensor 数值来创建
# tensor 数值是 [5.5, 3]
tensor1 = torch.tensor([5.5, 3])
print(tensor1)
输出结果:
tensor([5.5000, 3.0000])
除了上述几种方法,还可以根据已有的 tensor 变量创建新的 tensor 变量,这种做法的好处就是可以保留已有 tensor 的一些属性,包括尺寸大小、数值属性,除非是重新定义这些属性。相应的实现方法如下:
tensor.new_ones():new_*() 方法需要输入尺寸大小
tensor2 = tensor1.new_ones(5, 3, dtype=torch.double)
print(tensor2)
输出结果:
tensor([[1., 1., 1.],
[ ],
[ ],
[ ],
[ ]], dtype=torch.float64)
torch.randn_like(old_tensor):保留相同的尺寸大小
# 修改数值类型
tensor3 = torch.randn_like(tensor2, dtype=torch.float)
print('tensor3: ', tensor3)
输出结果,这里是根据上个方法声明的 tensor2
变量来声明新的变量,可以看出尺寸大小都是 5*3,但是数值类型是改变了的。
tensor3: tensor([[-0.4491, -0.2634, -0.0040],
[-0.1624, 0.4475, -0.8407],
[-0.6539, -1.2772, 0.6060],
[ 0.2304, 0.0879, -0.3876],
[ 1.2900, -0.7475, -1.8212]])
最后,对 tensors 的尺寸大小获取可以采用 tensor.size()
方法:
print(tensor3.size())
# 输出: torch.Size([5, 3])
注意:torch.Size
实际上是元组(tuple)类型,所以支持所有的元组操作。
1.2.2 操作(Operations)
操作也包含了很多语法,但这里作为快速入门,仅仅以加法操作作为例子进行介绍,更多的操作介绍可以点击下面网址查看官方文档,包括转置、索引、切片、数学计算、线性代数、随机数等等:
https://pytorch.org/docs/stable/torch.html
对于加法的操作,有几种实现方式:
+ 运算符 torch.add(tensor1, tensor2, [out=tensor3]) tensor1.add_(tensor2):直接修改 tensor 变量
tensor4 = torch.rand(5, 3)
print('tensor3 + tensor4= ', tensor3 + tensor4)
print('tensor3 + tensor4= ', torch.add(tensor3, tensor4))
# 新声明一个 tensor 变量保存加法操作的结果
result = torch.empty(5, 3)
torch.add(tensor3, tensor4, out=result)
print('add result= ', result)
# 直接修改变量
tensor3.add_(tensor4)
print('tensor3= ', tensor3)
输出结果
tensor3 + tensor4= tensor([[ 0.1000, 0.1325, 0.0461],
[ ],
[ ],
[ ],
[ ]])
tensor3 + tensor4= tensor([[ 0.1000, 0.1325, 0.0461],
[ ],
[ ],
[ ],
[ ]])
add result= tensor([[ 0.1000, 0.1325, 0.0461],
[ ],
[ ],
[ ],
[ ]])
tensor3= tensor([[ 0.1000, 0.1325, 0.0461],
[ ],
[ ],
[ ],
[ ]])
注意:可以改变 tensor 变量的操作都带有一个后缀 _
, 例如 x.copy_(y), x.t_()
都可以改变 x 变量
除了加法运算操作,对于 Tensor 的访问,和 Numpy 对数组类似,可以使用索引来访问某一维的数据,如下所示:
# 访问 tensor3 第一列数据
print(tensor3[:, 0])
输出结果:
tensor([0.1000, 0.4731, 0.2995, 1.0461, 2.2446])
对 Tensor 的尺寸修改,可以采用 torch.view()
,如下所示:
x = torch.randn(4, 4)
y = x.view(16)
# -1 表示除给定维度外的其余维度的乘积
z = x.view(-1, 8)
print(x.size(), y.size(), z.size())
输出结果:
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
如果 tensor 仅有一个元素,可以采用 .item()
来获取类似 Python 中整数类型的数值:
x = torch.randn(1)
print(x)
print(x.item())
输出结果:
tensor([0.4549])
0.4549027979373932
更多的运算操作可以查看官方文档的介绍:
https://pytorch.org/docs/stable/torch.html
1.3 和 Numpy 数组的转换
Tensor 和 Numpy 的数组可以相互转换,并且两者转换后共享在 CPU 下的内存空间,即改变其中一个的数值,另一个变量也会随之改变。
1.3.1 Tensor 转换为 Numpy 数组
实现 Tensor 转换为 Numpy 数组的例子如下所示,调用 tensor.numpy()
可以实现这个转换操作。
a = torch.ones(5)
print(a)
b = a.numpy()
print(b)
输出结果:
tensor([1., 1., 1., 1., 1.])
[1. 1. 1. 1. 1.]
此外,刚刚说了两者是共享同个内存空间的,例子如下所示,修改 tensor
变量 a
,看看从 a
转换得到的 Numpy 数组变量 b
是否发生变化。
a.add_(1)
print(a)
print(b)
输出结果如下,很明显,b
也随着 a
的改变而改变。
tensor([2., 2., 2., 2., 2.])
[2. 2. 2. 2. 2.]
1.3.2 Numpy 数组转换为 Tensor
转换的操作是调用 torch.from_numpy(numpy_array)
方法。例子如下所示:
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)
输出结果:
[2. 2. 2. 2. 2.]
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
在 CPU
上,除了 CharTensor
外的所有 Tensor
类型变量,都支持和 Numpy
数组的相互转换操作。
1.4. CUDA 张量
Tensors
可以通过 .to
方法转换到不同的设备上,即 CPU 或者 GPU 上。例子如下所示:
# 当 CUDA 可用的时候,可用运行下方这段代码,采用 torch.device() 方法来改变 tensors 是否在 GPU 上进行计算操作
if torch.cuda.is_available():
device = torch.device("cuda") # 定义一个 CUDA 设备对象
y = torch.ones_like(x, device=device) # 显示创建在 GPU 上的一个 tensor
x = x.to(device) # 也可以采用 .to("cuda")
z = x + y
print(z)
print(z.to("cpu", torch.double)) # .to() 方法也可以改变数值类型
输出结果,第一个结果就是在 GPU 上的结果,打印变量的时候会带有 device='cuda:0'
,而第二个是在 CPU 上的变量。
tensor([1.4549], device='cuda:0')
tensor([1.4549], dtype=torch.float64)
本小节教程:
https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html
本小节的代码:
https://github.com/ccc013/DeepLearning_Notes/blob/master/Pytorch/practise/basic_practise.ipynb
2. autograd
对于 Pytorch 的神经网络来说,非常关键的一个库就是 autograd
,它主要是提供了对 Tensors 上所有运算操作的自动微分功能,也就是计算梯度的功能。它属于 define-by-run
类型框架,即反向传播操作的定义是根据代码的运行方式,因此每次迭代都可以是不同的。
接下来会简单介绍一些例子来说明这个库的作用。
2.1 张量
torch.Tensor
是 Pytorch 最主要的库,当设置它的属性 .requires_grad=True
,那么就会开始追踪在该变量上的所有操作,而完成计算后,可以调用 .backward()
并自动计算所有的梯度,得到的梯度都保存在属性 .grad
中。
调用 .detach()
方法分离出计算的历史,可以停止一个 tensor 变量继续追踪其历史信息 ,同时也防止未来的计算会被追踪。
而如果是希望防止跟踪历史(以及使用内存),可以将代码块放在 with torch.no_grad():
内,这个做法在使用一个模型进行评估的时候非常有用,因为模型会包含一些带有 requires_grad=True
的训练参数,但实际上并不需要它们的梯度信息。
对于 autograd
的实现,还有一个类也是非常重要-- Function
。
Tensor
和 Function
两个类是有关联并建立了一个非循环的图,可以编码一个完整的计算记录。每个 tensor 变量都带有属性 .grad_fn
,该属性引用了创建了这个变量的 Function
(除了由用户创建的 Tensors,它们的 grad_fn=None
)。
如果要进行求导运算,可以调用一个 Tensor
变量的方法 .backward()
。如果该变量是一个标量,即仅有一个元素,那么不需要传递任何参数给方法 .backward()
,当包含多个元素的时候,就必须指定一个 gradient
参数,表示匹配尺寸大小的 tensor,这部分见第二小节介绍梯度的内容。
接下来就开始用代码来进一步介绍。
首先导入必须的库:
import torch
开始创建一个 tensor, 并让 requires_grad=True
来追踪该变量相关的计算操作:
x = torch.ones(2, 2, requires_grad=True)
print(x)
输出结果:
tensor([[1., 1.],
[ ]], requires_grad=True)
执行任意计算操作,这里进行简单的加法运算:
y = x + 2
print(y)
输出结果:
tensor([[3., 3.],
[3., 3.]], grad_fn=<AddBackward>)
y
是一个操作的结果,所以它带有属性 grad_fn
:
print(y.grad_fn)
输出结果:
继续对变量 y
进行操作:
z = y * y * 3
out = z.mean()
print('z=', z)
print('out=', out)
输出结果:
z= tensor([[27., 27.],
[27., 27.]], grad_fn=
)
out= tensor(27., grad_fn=
)
实际上,一个 Tensor
变量的默认 requires_grad
是 False
,可以像上述定义一个变量时候指定该属性是 True
,当然也可以定义变量后,调用 .requires_grad_(True)
设置为 True
,这里带有后缀 _
是会改变变量本身的属性,在上一节介绍加法操作 add_()
说明过,下面是一个代码例子:
a = torch.randn(2, 2)
a = ((a * 3) / (a - 1))
print(a.requires_grad)
a.requires_grad_(True)
print(a.requires_grad)
b = (a * a).sum()
print(b.grad_fn)
输出结果如下,第一行是为设置 requires_grad
的结果,接着显示调用 .requires_grad_(True)
,输出结果就是 True
。
False
True
0x00000216D25ED710 >
2.2 梯度
接下来就是开始计算梯度,进行反向传播的操作。out
变量是上一小节中定义的,它是一个标量,因此 out.backward()
相当于 out.backward(torch.tensor(1.))
,代码如下:
out.backward()
# 输出梯度 d(out)/dx
print(x.grad)
输出结果:
tensor([[4.5000, 4.5000],
[4.5000, 4.5000]])
结果应该就是得到数值都是 4.5 的矩阵。这里我们用 o
表示 out
变量,那么根据之前的定义会有:
详细来说,初始定义的 x
是一个全为 1 的矩阵,然后加法操作 x+2
得到 y
,接着 y*y*3
, 得到 z
,并且此时 z
是一个 2*2 的矩阵,所以整体求平均得到 out
变量应该是除以 4,所以得到上述三条公式。
因此,计算梯度:
从数学上来说,如果你有一个向量值函数:
那么对应的梯度是一个雅克比矩阵(Jacobian matrix):
一般来说,torch.autograd
就是用于计算雅克比向量(vector-Jacobian)乘积的工具。这里略过数学公式,直接上代码例子介绍:
x = torch.randn(3, requires_grad=True)
y = x * 2
while y.data.norm() < 1000:
y = y * 2
print(y)
输出结果:
tensor([ 237.5009, 1774.2396, 274.0625], grad_fn=<MulBackward>)
这里得到的变量 y
不再是一个标量,torch.autograd
不能直接计算完整的雅克比行列式,但我们可以通过简单的传递向量给 backward()
方法作为参数得到雅克比向量的乘积,例子如下所示:
v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v)
print(x.grad)
输出结果:
tensor([ 102.4000, 1024.0000, 0.1024])
最后,加上 with torch.no_grad()
就可以停止追踪变量历史进行自动梯度计算:
print(x.requires_grad)
print((x ** 2).requires_grad)
with torch.no_grad():
print((x ** 2).requires_grad)
输出结果:
True
True
False
更多有关
autograd
和Function
的介绍:
https://pytorch.org/docs/autograd
本小节教程:
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
本小节的代码:
https://github.com/ccc013/DeepLearning_Notes/blob/master/Pytorch/practise/autograd.ipynb
3. 神经网络
在 PyTorch 中 torch.nn
专门用于实现神经网络。其中 nn.Module
包含了网络层的搭建,以及一个方法-- forward(input)
,并返回网络的输出 outptu
.
下面是一个经典的 LeNet 网络,用于对字符进行分类。
对于神经网络来说,一个标准的训练流程是这样的:
定义一个多层的神经网络 对数据集的预处理并准备作为网络的输入 将数据输入到网络 计算网络的损失 反向传播,计算梯度 更新网络的梯度,一个简单的更新规则是 weight = weight - learning_rate * gradient
3.1 定义网络
首先定义一个神经网络,下面是一个 5 层的卷积神经网络,包含两层卷积层和三层全连接层:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 输入图像是单通道,conv1 kenrnel size=5*5,输出通道 6
self.conv1 = nn.Conv2d(1, 6, 5)
# conv2 kernel size=5*5, 输出通道 16
self.conv2 = nn.Conv2d(6, 16, 5)
# 全连接层
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# max-pooling 采用一个 (2,2) 的滑动窗口
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# 核(kernel)大小是方形的话,可仅定义一个数字,如 (2,2) 用 2 即可
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
# 除了 batch 维度外的所有维度
size = x.size()[1:]
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
打印网络结构:
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
这里必须实现forward
函数,而backward
函数在采用autograd
时就自动定义好了,在forward
方法可以采用任何的张量操作。
net.parameters()
可以返回网络的训练参数,使用例子如下:
params = list(net.parameters())
print('参数数量: ', len(params))
print('第一个参数大小: ', params[0].size())
输出:
参数数量: 10
第一个参数大小: torch.Size([6, 1, 5, 5])
然后简单测试下这个网络,随机生成一个 32*32 的输入:
# 随机定义一个变量输入网络
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
输出结果:
tensor([[ 0.1005, 0.0263, 0.0013, -0.1157, -0.1197, -0.0141, 0.1425, -0.0521,
0.0689, 0.0220]], grad_fn=<ThAddmmBackward>)
接着反向传播需要先清空梯度缓存,并反向传播随机梯度:
# 清空所有参数的梯度缓存,然后计算随机梯度进行反向传播
net.zero_grad()
out.backward(torch.randn(1, 10))
注意:
torch.nn
只支持小批量(mini-batches)数据,也就是输入不能是单个样本,比如对于nn.Conv2d
接收的输入是一个 4 维张量--nSamples * nChannels * Height * Width
。
所以,如果你输入的是单个样本,需要采用input.unsqueeze(0)
来扩充一个假的 batch 维度,即从 3 维变为 4 维。
3.2 损失函数
损失函数的输入是 (output, target)
,即网络输出和真实标签对的数据,然后返回一个数值表示网络输出和真实标签的差距。
PyTorch 中其实已经定义了不少的损失函数,这里仅采用简单的均方误差:nn.MSELoss
,例子如下:
output = net(input)
# 定义伪标签
target = torch.randn(10)
# 调整大小,使得和 output 一样的 size
target = target.view(1, -1)
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
输出如下:
tensor(0.6524, grad_fn=<MseLossBackward>)
这里,整个网络的数据输入到输出经历的计算图如下所示,其实也就是数据从输入层到输出层,计算 loss
的过程。
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss
如果调用 loss.backward()
,那么整个图都是可微分的,也就是说包括 loss
,图中的所有张量变量,只要其属性 requires_grad=True
,那么其梯度 .grad
张量都会随着梯度一直累计。
用代码来说明:
# MSELoss
print(loss.grad_fn)
# Linear layer
print(loss.grad_fn.next_functions[0][0])
# Relu
print(loss.grad_fn.next_functions[0][0].next_functions[0][0])
输出:
3.3 反向传播
反向传播的实现只需要调用 loss.backward()
即可,当然首先需要清空当前梯度缓存,即.zero_grad()
方法,否则之前的梯度会累加到当前的梯度,这样会影响权值参数的更新。
下面是一个简单的例子,以 conv1
层的偏置参数 bias
在反向传播前后的结果为例:
# 清空所有参数的梯度缓存
net.zero_grad()
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
输出结果:
conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([ 0.0069, 0.0021, 0.0090, -0.0060, -0.0008, -0.0073])
了解更多有关 torch.nn
库,可以查看官方文档:
https://pytorch.org/docs/stable/nn.html
3.4 更新权重
采用随机梯度下降(Stochastic Gradient Descent, SGD)方法的最简单的更新权重规则如下:
weight = weight \- learning_rate * gradient
按照这个规则,代码实现如下所示:
# 简单实现权重的更新例子
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)
但是这只是最简单的规则,深度学习有很多的优化算法,不仅仅是SGD
,还有Nesterov-SGD, Adam, RMSProp
等等,为了采用这些不同的方法,这里采用torch.optim
库,使用例子如下所示:
import torch.optim as optim
# 创建优化器
optimizer = optim.SGD(net.parameters(), lr=0.01)
# 在训练过程中执行下列操作
optimizer.zero_grad() # 清空梯度缓存
output = net(input)
loss = criterion(output, target)
loss.backward()
# 更新权重
optimizer.step()
注意,同样需要调用 optimizer.zero_grad()
方法清空梯度缓存。
本小节教程:
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
本小节的代码:
https://github.com/ccc013/DeepLearning_Notes/blob/master/Pytorch/practise/neural_network.ipynb
4. 训练分类器
上一节介绍了如何构建神经网络、计算 loss
和更新网络的权值参数,接下来需要做的就是实现一个图片分类器。
4.1 训练数据
在训练分类器前,当然需要考虑数据的问题。通常在处理如图片、文本、语音或者视频数据的时候,一般都采用标准的 Python 库将其加载并转成 Numpy 数组,然后再转回为 PyTorch 的张量。
对于图像,可以采用 Pillow, OpenCV
库;对于语音,有 scipy
和librosa
;对于文本,可以选择原生 Python 或者 Cython 进行加载数据,或者使用 NLTK
和SpaCy
。
PyTorch 对于计算机视觉,特别创建了一个 torchvision
的库,它包含一个数据加载器(data loader),可以加载比较常见的数据集,比如 Imagenet, CIFAR10, MNIST
等等,然后还有一个用于图像的数据转换器(data transformers),调用的库是 torchvision.datasets
和 torch.utils.data.DataLoader
。
在本教程中,将采用 CIFAR10
数据集,它包含 10 个类别,分别是飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。数据集中的图片都是 3x32x32
。一些例子如下所示:
4.2 训练图片分类器
训练流程如下:
通过调用 torchvision
加载和归一化CIFAR10
训练集和测试集;构建一个卷积神经网络; 定义一个损失函数; 在训练集上训练网络; 在测试集上测试网络性能。
4.2.1 加载和归一化 CIFAR10
首先导入必须的包:
import torch
import torchvision
import torchvision.transforms as transforms
torchvision
的数据集输出的图片都是 PILImage
,即取值范围是 [0, 1]
,这里需要做一个转换,变成取值范围是 [-1, 1]
, 代码如下所示:
# 将图片数据从 [0,1] 归一化为 [-1, 1] 的取值范围
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
这里下载好数据后,可以可视化部分训练图片,代码如下:
import matplotlib.pyplot as plt
import numpy as np
# 展示图片的函数
def imshow(img):
img = img / 2 + 0.5 # 非归一化
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# 随机获取训练集图片
dataiter = iter(trainloader)
images, labels = dataiter.next()
# 展示图片
imshow(torchvision.utils.make_grid(images))
# 打印图片类别标签
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
展示图片如下所示:
其类别标签为:
frog plane dog ship
4.2.2 构建一个卷积神经网络
这部分内容其实直接采用上一节定义的网络即可,除了修改 conv1
的输入通道,从 1 变为 3,因为这次接收的是 3 通道的彩色图片。
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
4.2.3 定义损失函数和优化器
这里采用类别交叉熵函数和带有动量的 SGD 优化方法:
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
4.2.4 训练网络
第四步自然就是开始训练网络,指定需要迭代的 epoch,然后输入数据,指定次数打印当前网络的信息,比如 loss
或者准确率等性能评价标准。
import time
start = time.time()
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 获取输入数据
inputs, labels = data
# 清空梯度缓存
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 打印统计信息
running_loss += loss.item()
if i % 2000 == 1999:
# 每 2000 次迭代打印一次信息
print('[%d, %5d] loss: %.3f' % (epoch + 1, i+1, running_loss / 2000))
running_loss = 0.0
print('Finished Training! Total cost time: ', time.time()-start)
这里定义训练总共 2 个 epoch,训练信息如下,大概耗时为 77s。
[1, 2000] loss: 2.226
[1, 4000] loss: 1.897
[1, 6000] loss: 1.725
[1, 8000] loss: 1.617
[1, 10000] loss: 1.524
[1, 12000] loss: 1.489
[2, 2000] loss: 1.407
[2, 4000] loss: 1.376
[2, 6000] loss: 1.354
[2, 8000] loss: 1.347
[2, 10000] loss: 1.324
[2, 12000] loss: 1.311
Finished Training! Total cost time: 77.24696755409241
4.2.5 测试模型性能
训练好一个网络模型后,就需要用测试集进行测试,检验网络模型的泛化能力。对于图像分类任务来说,一般就是用准确率作为评价标准。
首先,我们先用一个 batch
的图片进行小小测试,这里 batch=4
,也就是 4 张图片,代码如下:
dataiter = iter(testloader)
images, labels = dataiter.next()
# 打印图片
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
图片和标签分别如下所示:
GroundTruth: cat ship ship plane
然后用这四张图片输入网络,看看网络的预测结果:
# 网络输出
outputs = net(images)
# 预测结果
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
输出为:
Predicted: cat ship ship ship
前面三张图片都预测正确了,第四张图片错误预测飞机为船。
接着,让我们看看在整个测试集上的准确率可以达到多少吧!
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
labels = data
outputs = net(images)
predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
%d %%' % (100 * correct / total)) :
输出结果如下
Accuracy of the network on the 10000 test images: 55 %
这里可能准确率并不一定一样,教程中的结果是 51%
,因为权重初始化问题,可能多少有些浮动,相比随机猜测 10 个类别的准确率(即 10%),这个结果是不错的,当然实际上是非常不好,不过我们仅仅采用 5 层网络,而且仅仅作为教程的一个示例代码。
然后,还可以再进一步,查看每个类别的分类准确率,跟上述代码有所不同的是,计算准确率部分是 c = (predicted == labels).squeeze()
,这段代码其实会根据预测和真实标签是否相等,输出 1 或者 0,表示真或者假,因此在计算当前类别正确预测数量时候直接相加,预测正确自然就是加 1,错误就是加 0,也就是没有变化。
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))
输出结果,可以看到猫、鸟、鹿是错误率前三,即预测最不准确的三个类别,反倒是船和卡车最准确。
Accuracy of plane : 58 %
Accuracy of car : 59 %
Accuracy of bird : 40 %
Accuracy of cat : 33 %
Accuracy of deer : 39 %
Accuracy of dog : 60 %
Accuracy of frog : 54 %
Accuracy of horse : 66 %
Accuracy of ship : 70 %
Accuracy of truck : 72 %
4.3 在 GPU 上训练
深度学习自然需要 GPU 来加快训练速度的。所以接下来介绍如果是在 GPU 上训练,应该如何实现。
首先,需要检查是否有可用的 GPU 来训练,代码如下:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
输出结果如下,这表明你的第一块 GPU 显卡或者唯一的 GPU 显卡是空闲可用状态,否则会打印 cpu
。
cuda:0
既然有可用的 GPU ,接下来就是在 GPU 上进行训练了,其中需要修改的代码如下,分别是需要将网络参数和数据都转移到 GPU 上:
net.to(device)
inputs, labels = inputs.to(device), labels.to(device)
修改后的训练部分代码:
import time
# 在 GPU 上训练注意需要将网络和数据放到 GPU 上
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
start = time.time()
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 获取输入数据
labels = data
labels = inputs.to(device), labels.to(device)
# 清空梯度缓存
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 打印统计信息
running_loss += loss.item()
if i % 2000 == 1999:
# 每 2000 次迭代打印一次信息
%5d] loss: %.3f' % (epoch + 1, i+1, running_loss / 2000))
running_loss = 0.0
Training! Total cost time: ', time.time() - start)
注意,这里调用 net.to(device)
后,需要定义下优化器,即传入的是 CUDA 张量的网络参数。训练结果和之前的类似,而且其实因为这个网络非常小,转移到 GPU 上并不会有多大的速度提升,而且我的训练结果看来反而变慢了,也可能是因为我的笔记本的 GPU 显卡问题。
如果需要进一步提升速度,可以考虑采用多 GPUs,也就是下一节的内容。
本小节教程:
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
本小节的代码:
https://github.com/ccc013/DeepLearning_Notes/blob/master/Pytorch/practise/train_classifier_example.ipynb
5. 数据并行
这部分教程将学习如何使用 DataParallel
来使用多个 GPUs 训练网络。
首先,在 GPU 上训练模型的做法很简单,如下代码所示,定义一个 device
对象,然后用 .to()
方法将网络模型参数放到指定的 GPU 上。
device = torch.device("cuda:0")
model.to(device)
接着就是将所有的张量变量放到 GPU 上:
mytensor = my_tensor.to(device)
注意,这里 my_tensor.to(device)
是返回一个 my_tensor
的新的拷贝对象,而不是直接修改 my_tensor
变量,因此你需要将其赋值给一个新的张量,然后使用这个张量。
Pytorch 默认只会采用一个 GPU,因此需要使用多个 GPU,需要采用 DataParallel
,代码如下所示:
model = nn.DataParallel(model)
这代码也就是本节教程的关键,接下来会继续详细介绍。
5.1 导入和参数
首先导入必须的库以及定义一些参数:
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
# Parameters and DataLoaders
input_size = 5
output_size = 2
batch_size = 30
data_size = 100
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
这里主要定义网络输入大小和输出大小,batch
以及图片的大小,并定义了一个 device
对象。
5.2 构建一个假数据集
接着就是构建一个假的(随机)数据集。实现代码如下:
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
batch_size=batch_size, shuffle=True)
5.3 简单的模型
接下来构建一个简单的网络模型,仅仅包含一层全连接层的神经网络,加入 print()
函数用于监控网络输入和输出 tensors
的大小:
class Model(nn.Module):
# Our model
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
def forward(self, input):
output = self.fc(input)
print("\tIn Model: input size", input.size(),
"output size", output.size())
return output
5.4 创建模型和数据平行
这是本节的核心部分。首先需要定义一个模型实例,并且检查是否拥有多个 GPUs,如果是就可以将模型包裹在 nn.DataParallel
,并调用 model.to(device)
。代码如下:
model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.to(device)
5.5 运行模型
接着就可以运行模型,看看打印的信息:
for data in rand_loader:
input = data.to(device)
output = model(input)
print("Outside: input size", input.size(),
"output_size", output.size())
输出如下:
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
5.6 运行结果
如果仅仅只有 1 个或者没有 GPU ,那么 batch=30
的时候,模型会得到输入输出的大小都是 30。但如果有多个 GPUs,那么结果如下:
2 GPUs
# on 2 GPUs
Let's use 2 GPUs!
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
3 GPUs
Let's use 3 GPUs!
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
8 GPUs
Let's use 8 GPUs!
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
5.7 总结
DataParallel
会自动分割数据集并发送任务给多个 GPUs 上的多个模型。然后等待每个模型都完成各自的工作后,它又会收集并融合结果,然后返回。
更详细的数据并行教程:
https://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html
本小节教程:
https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html
小结
教程从最基础的张量开始介绍,然后介绍了非常重要的自动求梯度的 autograd
,接着介绍如何构建一个神经网络,如何训练图像分类器,最后简单介绍使用多 GPUs 加快训练速度的方法。
快速入门教程就介绍完了,接下来你可以选择:
训练一个神经网络来玩视频游戏 在 imagenet 上训练 ResNet 采用 GAN 训练一个人脸生成器 采用循环 LSTM 网络训练一个词语级别的语言模型 更多的例子 更多的教程 在 Forums 社区讨论 PyTorch
2020-5-23 更新:
最后,看到评论区有人说文章标题的问题,其实文章标题是直接翻译官方教程的标题--DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ,官方标题如果直译的话应该是一个 60 分钟的闪电战。
当然真正要能入门肯定需要不止一个 60 分钟,特别是对于没有深度学习基础的,可能需要先补充一些机器学习或者深度学习基础内容,所以我也更新一下,推荐我之前写的关于机器学习和深度学习的入门资料的文章,主要是这几个方面的介绍:
编程语言:实现机器学习,主要是介绍 Python 方面的语言; 书籍:看书通常是入门的一种方法,比较适合自律性强的同学; 视频:入门的第二种方法就是看视频,虽然会比看书慢一些,但是胜在详细,对完全零基础者是非常友好的; 教程:主要是一些教程文章; 博客网站:常去的网站,包括一些大神博客; Github 项目:Github 上的一些项目; 比赛:最好的学习方法还是通过项目实战来加深理解,机器学习还有很多公开的比赛; 论文:无论是学生还是工作,看论文都是为了紧跟大牛的步伐,了解研究领域最先进最好的算法。
鑫鑫淼淼焱焱:机器学习入门学习资料推荐
https://zhuanlan.zhihu.com/p/60877739
如果是想了解计算机视觉和进一步了解 PyTorch的教程,之前也有进行回答:
求推荐一些高质量的计算机视觉,pytorch教程?
https://www.zhihu.com/question/388079431/answer/1223220998
如果你看完本文还有其他问,欢迎留言告诉我。
推荐阅读