100多 项开源视觉 SLAM 方案够你用了吗?

新机器视觉

共 35974字,需浏览 72分钟

 ·

2021-06-28 10:29

前言:

最近在了解一些视觉SLAM算法,发现这篇文章总结的很不错,所以给需要的朋友的也分享一下,感谢前辈的总结。

作者:小吴同学@知乎

整理羽林君


模块介绍:

 1. 本文整理自我的 Github 仓库(包括开源 SLAM 方案,近期论文):

Visual_SLAM_Related_Researchgithub.com

 2.本文简单将各种方案分为以下 7 类(固然有不少文章无法恰当分类,比如动态语义稠密建图的 VISLAM +_+):


  • 一、Geometric SLAM

  • 二、Semantic / Deep SLAM

  • 三、Multi-Landmarks / Object SLAM

  • 四、Sensor Fusion

  • 五、Dynamic SLAM

  • 六、Mapping

  • 七、Optimization

3. 由于此仓库自 2019 年 3 月开始整理(20 年 3 月公开),所以以下的代码除了经典的框架之外基本都集中在 19 年之后;此外个人比较关注 VO、物体级 SLAM 和多路标 SLAM,所以以下内容收集也不完整,无法涵盖视觉 SLAM 的所有研究,也欢迎大家有好的方案可以在 issue 或评论中分享补充。

一、Geometric SLAM(23 项)

这一类是传统的基于特征点、直接法或半直接法的几何 SLAM。

1. PTAM

  • 论文:Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C]//Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on. IEEE, 2007: 225-234.

  • 代码:github.com/Oxford-PTAM/

  • 工程地址:robots.ox.ac.uk/~gk/PTA

  • 作者其他研究:robots.ox.ac.uk/~gk/pub

2. S-PTAM(双目 PTAM)

  • 论文:Taihú Pire,Thomas Fischer, Gastón Castro, Pablo De Cristóforis, Javier Civera and Julio Jacobo Berlles. S-PTAM: Stereo Parallel Tracking and Mapping. Robotics and Autonomous Systems, 2017.

  • 代码:github.com/lrse/sptam

  • 作者其他论文:Castro G, Nitsche M A, Pire T, et al. Efficient on-board Stereo SLAM through constrained-covisibility strategies[J]. Robotics and Autonomous Systems, 2019.

3. MonoSLAM

  • 论文:Davison A J, Reid I D, Molton N D, et al. MonoSLAM: Real-time single camera SLAM[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 1052-1067.

  • 代码:github.com/hanmekim/Sce

4. ORB-SLAM2

  • 论文:Mur-Artal R, Tardós J D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.

  • 代码:github.com/raulmur/ORB_

  • 作者其他论文:

    • 单目半稠密建图:Mur-Artal R, Tardós J D. Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM[C]//Robotics: Science and Systems. 2015, 2015.

    • VIORB:Mur-Artal R, Tardós J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 796-803.

    • 多地图:Elvira R, Tardós J D, Montiel J M M. ORBSLAM-Atlas: a robust and accurate multi-map system[J]. arXiv preprint arXiv:1908.11585, 2019.

以下 5, 6, 7, 8 几项是 TUM 计算机视觉组全家桶,官方主页

5. DSO

  • 论文:Engel J, Koltun V, Cremers D. Direct sparse odometry[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(3): 611-625.

  • 代码:github.com/JakobEngel/d

  • 双目 DSO:Wang R, Schworer M, Cremers D. Stereo DSO: Large-scale direct sparse visual odometry with stereo cameras[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 3903-3911.

  • VI-DSO:Von Stumberg L, Usenko V, Cremers D. Direct sparse visual-inertial odometry using dynamic marginalization[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 2510-2517.

6. LDSO

  • 高翔在 DSO 上添加闭环的工作

  • 论文:Gao X, Wang R, Demmel N, et al. LDSO: Direct sparse odometry with loop closure[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 2198-2204.

  • 代码:github.com/tum-vision/L

7. LSD-SLAM

  • 论文:Engel J, Schöps T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM[C]//European conference on computer vision. Springer, Cham, 2014: 834-849.

  • 代码:github.com/tum-vision/l

8. DVO-SLAM

  • 论文:Kerl C, Sturm J, Cremers D. Dense visual SLAM for RGB-D cameras[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013: 2100-2106.

  • 代码 1:github.com/tum-vision/d

  • 代码 2:github.com/tum-vision/d

  • 其他论文:

    • Kerl C, Sturm J, Cremers D. Robust odometry estimation for RGB-D cameras[C]//2013 IEEE international conference on robotics and automation. IEEE, 2013: 3748-3754.

    • Steinbrücker F, Sturm J, Cremers D. Real-time visual odometry from dense RGB-D images[C]//2011 IEEE international conference on computer vision workshops (ICCV Workshops). IEEE, 2011: 719-722.

9. SVO

  • 苏黎世大学机器人与感知课题组

  • 论文:Forster C, Pizzoli M, Scaramuzza D. SVO: Fast semi-direct monocular visual odometry[C]//2014 IEEE international conference on robotics and automation (ICRA). IEEE, 2014: 15-22.

  • 代码:github.com/uzh-rpg/rpg_

  • Forster C, Zhang Z, Gassner M, et al. SVO: Semidirect visual odometry for monocular and multicamera systems[J]. IEEE Transactions on Robotics, 2016, 33(2): 249-265.

10. DSM

  • 论文:Zubizarreta J, Aguinaga I, Montiel J M M. Direct sparse mapping[J]. arXiv preprint arXiv:1904.06577, 2019.

  • 代码:github.com/jzubizarreta ;Video

11. openvslam

  • 论文:Sumikura S, Shibuya M, Sakurada K. OpenVSLAM: A Versatile Visual SLAM Framework[C]//Proceedings of the 27th ACM International Conference on Multimedia. 2019: 2292-2295.

  • 代码:github.com/xdspacelab/o ;文档

12. se2lam(地面车辆位姿估计的视觉里程计)

  • 论文:Zheng F, Liu Y H. Visual-Odometric Localization and Mapping for Ground Vehicles Using SE (2)-XYZ Constraints[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 3556-3562.

  • 代码:github.com/izhengfan/se

  • 作者的另外一项工作

    • 论文:Zheng F, Tang H, Liu Y H. Odometry-vision-based ground vehicle motion estimation with se (2)-constrained se (3) poses[J]. IEEE transactions on cybernetics, 2018, 49(7): 2652-2663.

    • 代码:github.com/izhengfan/se

13. GraphSfM(基于图的并行大规模 SFM)

  • 论文:Chen Y, Shen S, Chen Y, et al. Graph-Based Parallel Large Scale Structure from Motion[J]. arXiv preprint arXiv:1912.10659, 2019.

  • 代码:github.com/AIBluefisher

14. LCSD_SLAM(松耦合的半直接法单目 SLAM)

  • 论文:Lee S H, Civera J. Loosely-Coupled semi-direct monocular SLAM[J]. IEEE Robotics and Automation Letters, 2018, 4(2): 399-406.

  • 代码:github.com/sunghoon031/ ;谷歌学术 ;演示视频

  • 作者另外一篇关于单目尺度的文章 代码开源 :Lee S H, de Croon G. Stability-based scale estimation for monocular SLAM[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 780-787.

15. RESLAM(基于边的 SLAM)

  • 论文:Schenk F, Fraundorfer F. RESLAM: A real-time robust edge-based SLAM system[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 154-160.

  • 代码:github.com/fabianschenk ; 项目主页

16. scale_optimization(将单目 DSO 拓展到双目)

  • 论文:Mo J, Sattar J. Extending Monocular Visual Odometry to Stereo Camera System by Scale Optimization[C]. International Conference on Intelligent Robots and Systems (IROS), 2019.

  • 代码:github.com/jiawei-mo/sc

17. BAD-SLAM(直接法 RGB-D SLAM)

  • 论文:Schops T, Sattler T, Pollefeys M. BAD SLAM: Bundle Adjusted Direct RGB-D SLAM[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 134-144.

  • 代码:github.com/ETH3D/badsla

18. GSLAM(集成 ORB-SLAM2,DSO,SVO 的通用框架)

  • 论文:Zhao Y, Xu S, Bu S, et al. GSLAM: A general SLAM framework and benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1110-1120.

  • 代码:github.com/zdzhaoyong/G

19. ARM-VO(运行于 ARM 处理器上的单目 VO)

  • 论文:Nejad Z Z, Ahmadabadian A H. ARM-VO: an efficient monocular visual odometry for ground vehicles on ARM CPUs[J]. Machine Vision and Applications, 2019: 1-10.

  • 代码:github.com/zanazakaryai

20. cvo-rgbd(直接法 RGB-D VO)

  • 论文:Ghaffari M, Clark W, Bloch A, et al. Continuous Direct Sparse Visual Odometry from RGB-D Images[J]. arXiv preprint arXiv:1904.02266, 2019.

  • 代码:github.com/MaaniGhaffar

21. Map2DFusion(单目 SLAM 无人机图像拼接)

  • 论文:Bu S, Zhao Y, Wan G, et al. Map2DFusion: Real-time incremental UAV image mosaicing based on monocular slam[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 4564-4571.

  • 代码:github.com/zdzhaoyong/M

22. CCM-SLAM(多机器人协同单目 SLAM)

  • 论文:Schmuck P, Chli M. CCM‐SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams[J]. Journal of Field Robotics, 2019, 36(4): 763-781.

  • 代码:github.com/VIS4ROB-lab/ | Video

23. ORB-SLAM3

  • 论文:Carlos Campos, Richard Elvira, et al.ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM[J]. arXiv preprint arXiv:2007.11898, 2020.

  • 代码:github.com/UZ-SLAMLab/O | Video

二、Semantic / Depp SLAM(16 项)

SLAM 与深度学习相结合的工作当前主要体现在两个方面,一方面是将语义信息参与到建图、位姿估计等环节中,另一方面是端到端地完成 SLAM 的某一个步骤(比如 VO,闭环等)。个人对后者没太关注,也同样欢迎大家在 issue 中分享。

24. MsakFusion

  • 论文:Runz M, Buffier M, Agapito L. Maskfusion: Real-time recognition, tracking and reconstruction of multiple moving objects[C]//2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2018: 10-20.

  • 代码:github.com/martinruenz/

25. SemanticFusion

  • 论文:McCormac J, Handa A, Davison A, et al. Semanticfusion: Dense 3d semantic mapping with convolutional neural networks[C]//2017 IEEE International Conference on Robotics and automation (ICRA). IEEE, 2017: 4628-4635.

  • 代码:github.com/seaun163/sem

26. semantic_3d_mapping

  • 论文:Yang S, Huang Y, Scherer S. Semantic 3D occupancy mapping through efficient high order CRFs[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 590-597.

  • 代码:github.com/shichaoy/sem

27. Kimera(实时度量与语义定位建图开源库)

  • 论文:Rosinol A, Abate M, Chang Y, et al. Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping[J]. arXiv preprint arXiv:1910.02490, 2019.

  • 代码:github.com/MIT-SPARK/Ki ;演示视频

28. NeuroSLAM(脑启发式 SLAM)

  • 论文:Yu F, Shang J, Hu Y, et al. NeuroSLAM: a brain-inspired SLAM system for 3D environments[J]. Biological Cybernetics, 2019: 1-31.

  • 代码:github.com/cognav/Neuro

  • 第四作者就是 Rat SLAM 的作者,文章也比较了十余种脑启发式的 SLAM

29. gradSLAM(自动分区的稠密 SLAM)

  • 论文:Jatavallabhula K M, Iyer G, Paull L. gradSLAM: Dense SLAM meets Automatic Differentiation[J]. arXiv preprint arXiv:1910.10672, 2019.

  • 代码(预计 20 年 4 月放出):github.com/montrealrobo ;项目主页,演示视频

30. ORB-SLAM2 + 目标检测/分割的方案语义建图

  • github.com/floatlazer/s

  • github.com/qixuxiang/or

  • github.com/Ewenwan/ORB_

31. SIVO(语义辅助特征选择)

  • 论文:Ganti P, Waslander S. Network Uncertainty Informed Semantic Feature Selection for Visual SLAM[C]//2019 16th Conference on Computer and Robot Vision (CRV). IEEE, 2019: 121-128.

  • 代码:github.com/navganti/SIV

32. FILD(临近图增量式闭环检测)

  • 论文:Shan An, Guangfu Che, Fangru Zhou, Xianglong Liu, Xin Ma, Yu Chen.Fast and Incremental Loop Closure Detection using Proximity Graphs. pp. 378-385, The 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2019)

  • 代码:github.com/AnshanTJU/FI

33. object-detection-sptam(目标检测与双目 SLAM)

  • 论文:Pire T, Corti J, Grinblat G. Online Object Detection and Localization on Stereo Visual SLAM System[J]. Journal of Intelligent & Robotic Systems, 2019: 1-10.

  • 代码:github.com/CIFASIS/obje

34. Map Slammer(单目深度估计 + SLAM)

  • 论文:Torres-Camara J M, Escalona F, Gomez-Donoso F, et al. Map Slammer: Densifying Scattered KSLAM 3D Maps with Estimated Depth[C]//Iberian Robotics conference. Springer, Cham, 2019: 563-574.

  • 代码:github.com/jmtc7/mapSla

35. NOLBO(变分模型的概率 SLAM)

  • 论文:Yu H, Lee B. Not Only Look But Observe: Variational Observation Model of Scene-Level 3D Multi-Object Understanding for Probabilistic SLAM[J]. arXiv preprint arXiv:1907.09760, 2019.

  • 代码:github.com/bogus2000/NO

36. GCNv2_SLAM (基于图卷积神经网络 SLAM)

  • 论文:Tang J, Ericson L, Folkesson J, et al. GCNv2: Efficient correspondence prediction for real-time SLAM[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3505-3512.

  • 代码:github.com/jiexiong2016Video

37. semantic_suma(激光语义建图)

  • 论文:Chen X, Milioto A, Palazzolo E, et al. SuMa++: Efficient LiDAR-based semantic SLAM[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4530-4537.

  • 代码:github.com/PRBonn/seman ;Video

38. Neural-SLAM(主动神经 SLAM)

  • 论文:Chaplot D S, Gandhi D, Gupta S, et al. Learning to explore using active neural slam[C]. ICLR 2020.

  • 代码:github.com/devendrachap

39. TartanVO:一种通用的基于学习的 VO

  • 论文:Wang W, Hu Y, Scherer S. TartanVO: A Generalizable Learning-based VO[J]. arXiv preprint arXiv:2011.00359, 2020.

  • 代码:github.com/castacks/tar

  • 数据集:IROS2020 TartanAir: A Dataset to Push the Limits of Visual SLAM,数据集地址

三、Multi-Landmarks / Object SLAM(15 项)

其实多路标的点、线、平面 SLAM 和物体级 SLAM 完全可以分类在 Geometric SLAM 和 Semantic SLAM 中,但个人对这一方向比较感兴趣(也是我的研究生课题),所以将其独立出来,开源方案相对较少,但很有意思。

40. PL-SVO(点线 SVO)

  • 论文:Gomez-Ojeda R, Briales J, Gonzalez-Jimenez J. PL-SVO: Semi-direct Monocular Visual Odometry by combining points and line segments[C]//Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016: 4211-4216.

  • 代码:github.com/rubengooj/pl

41. stvo-pl(双目点线 VO)

  • 论文:Gomez-Ojeda R, Gonzalez-Jimenez J. Robust stereo visual odometry through a probabilistic combination of points and line segments[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016: 2521-2526.

  • 代码:github.com/rubengooj/st

42. PL-SLAM(点线 SLAM)

  • 论文:Gomez-Ojeda R, Zuñiga-Noël D, Moreno F A, et al. PL-SLAM: a Stereo SLAM System through the Combination of Points and Line Segments[J]. arXiv preprint arXiv:1705.09479, 2017.

  • 代码:github.com/rubengooj/pl

  • Gomez-Ojeda R, Moreno F A, Zuñiga-Noël D, et al. PL-SLAM: a stereo SLAM system through the combination of points and line segments[J]. IEEE Transactions on Robotics, 2019, 35(3): 734-746.

43. PL-VIO

  • 论文:He Y, Zhao J, Guo Y, et al. PL-VIO: Tightly-coupled monocular visual–inertial odometry using point and line features[J]. Sensors, 2018, 18(4): 1159.

  • 代码:github.com/HeYijia/PL-V

  • VINS + 线段:github.com/Jichao-Peng/

44. lld-slam(用于 SLAM 的可学习型线段描述符)

  • 论文:Vakhitov A, Lempitsky V. Learnable line segment descriptor for visual SLAM[J]. IEEE Access, 2019, 7: 39923-39934.

  • 代码:github.com/alexandervak ;Video

点线结合的工作还有很多,国内的比如
+ 上交邹丹平老师的 Zou D, Wu Y, Pei L, et al. StructVIO: visual-inertial odometry with structural regularity of man-made environments[J]. IEEE Transactions on Robotics, 2019, 35(4): 999-1013.
+ 浙大的 Zuo X, Xie X, Liu Y, et al. Robust visual SLAM with point and line features[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 1775-1782.

45. PlaneSLAM

  • 论文:Wietrzykowski J. On the representation of planes for efficient graph-based slam with high-level features[J]. Journal of Automation Mobile Robotics and Intelligent Systems, 2016, 10.

  • 代码:github.com/LRMPUT/Plane

  • 作者另外一项开源代码,没有找到对应的论文:github.com/LRMPUT/PUTSL

46. Eigen-Factors(特征因子平面对齐)

  • 论文:Ferrer G. Eigen-Factors: Plane Estimation for Multi-Frame and Time-Continuous Point Cloud Alignment[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 1278-1284.

  • 代码:gitlab.com/gferrer/eige ;演示视频

47. PlaneLoc

  • 论文:Wietrzykowski J, Skrzypczyński P. PlaneLoc: Probabilistic global localization in 3-D using local planar features[J]. Robotics and Autonomous Systems, 2019, 113: 160-173.

  • 代码:github.com/LRMPUT/Plane

48. Pop-up SLAM

  • 论文:Yang S, Song Y, Kaess M, et al. Pop-up slam: Semantic monocular plane slam for low-texture environments[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 1222-1229.

  • 代码:github.com/shichaoy/pop

49. Object SLAM

  • 论文:Mu B, Liu S Y, Paull L, et al. Slam with objects using a nonparametric pose graph[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 4602-4609.

  • 代码:github.com/BeipengMu/ob ;Video

50. voxblox-plusplus(物体级体素建图)

  • 论文:Grinvald M, Furrer F, Novkovic T, et al. Volumetric instance-aware semantic mapping and 3D object discovery[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 3037-3044.

  • 代码:github.com/ethz-asl/vox

51. Cube SLAM

  • 论文:Yang S, Scherer S. Cubeslam: Monocular 3-d object slam[J]. IEEE Transactions on Robotics, 2019, 35(4): 925-938.

  • 代码:github.com/shichaoy/cub

  • 对,这就是带我入坑的一项工作,2018 年 11 月份看到这篇论文(当时是预印版)之后开始学习物体级 SLAM,个人对 Cube SLAM 的一些注释和总结:链接。

  • 也有很多有意思的但没开源的物体级 SLAM

    • Ok K, Liu K, Frey K, et al. Robust Object-based SLAM for High-speed Autonomous Navigation[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 669-675.

    • Li J, Meger D, Dudek G. Semantic Mapping for View-Invariant Relocalization[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 7108-7115.

    • Nicholson L, Milford M, Sünderhauf N. Quadricslam: Dual quadrics from object detections as landmarks in object-oriented slam[J]. IEEE Robotics and Automation Letters, 2018, 4(1): 1-8.

52. VPS-SLAM(平面语义 SLAM)

  • 论文:Bavle H, De La Puente P, How J, et al. VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems[J]. IEEE Access, 2020.

  • 代码:bitbucket.org/hridaybav

53. Structure-SLAM-PointLine (室内环境单目点线 SLAM)

  • 论文:Li Y, Brasch N, Wang Y, et al. Structure-SLAM: Low-Drift Monocular SLAM in Indoor Environments[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6583-6590.

  • 代码:github.com/yanyan-li/St

54. PL-VINS

  • 论文:Fu Q, Wang J, Yu H, et al. PL-VINS: Real-Time Monocular Visual-Inertial SLAM with Point and Line[J]. arXiv preprint arXiv:2009.07462, 2020.

  • 代码:github.com/cnqiangfu/PL

四、Sensor Fusion(19 项)

在传感器融合方面只关注了视觉 + 惯导,其他传感器像 LiDAR,GPS 关注较少。

55. msckf_vio

  • 论文:Sun K, Mohta K, Pfrommer B, et al. Robust stereo visual inertial odometry for fast autonomous flight[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 965-972.

  • 代码:github.com/KumarRobotic ;Video

56. rovio

  • 论文:Bloesch M, Omari S, Hutter M, et al. Robust visual inertial odometry using a direct EKF-based approach[C]//2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2015: 298-304.

  • 代码:github.com/ethz-asl/rov ;Video

57. R-VIO

  • 论文:Huai Z, Huang G. Robocentric visual-inertial odometry[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 6319-6326.

  • 代码:github.com/rpng/R-VIO ;Video

58. okvis

  • 论文:Leutenegger S, Lynen S, Bosse M, et al. Keyframe-based visual–inertial odometry using nonlinear optimization[J]. The International Journal of Robotics Research, 2015, 34(3): 314-334.

  • 代码:github.com/ethz-asl/okv

59. VIORB

  • 论文:Mur-Artal R, Tardós J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 796-803.

  • 代码:github.com/jingpang/Lea (VIORB 本身是没有开源的,这是王京大佬复现的一个版本)

  • VI-ORB-SLAM2:github.com/YoujieXia/VI

60. VINS-mono

  • 论文:Qin T, Li P, Shen S. Vins-mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020.

  • 代码:github.com/HKUST-Aerial

  • 双目版 VINS-Fusion:github.com/HKUST-Aerial

  • 移动段 VINS-mobile:github.com/HKUST-Aerial

61. VINS-RGBD

  • 论文:Shan Z, Li R, Schwertfeger S. RGBD-Inertial Trajectory Estimation and Mapping for Ground Robots[J]. Sensors, 2019, 19(10): 2251.

  • 代码:github.com/STAR-Center/ ;Video

62. Open-VINS

  • 论文:Geneva P, Eckenhoff K, Lee W, et al. Openvins: A research platform for visual-inertial estimation[C]//IROS 2019 Workshop on Visual-Inertial Navigation: Challenges and Applications, Macau, China. IROS 2019.

  • 代码:github.com/rpng/open_vi

63. versavis(多功能的视惯传感器系统)

  • 论文:Tschopp F, Riner M, Fehr M, et al. VersaVIS—An Open Versatile Multi-Camera Visual-Inertial Sensor Suite[J]. Sensors, 2020, 20(5): 1439.

  • 代码:github.com/ethz-asl/ver

64. CPI(视惯融合的封闭式预积分)

  • 论文:Eckenhoff K, Geneva P, Huang G. Closed-form preintegration methods for graph-based visual–inertial navigation[J]. The International Journal of Robotics Research, 2018.

  • 代码:github.com/rpng/cpi ;Video

65. TUM Basalt

  • 论文:Usenko V, Demmel N, Schubert D, et al. Visual-inertial mapping with non-linear factor recovery[J]. IEEE Robotics and Automation Letters, 2019.

  • 代码:github.com/VladyslavUse ;Video;Project Page

66. Limo:激光单目视觉里程计

  • 论文:Graeter J, Wilczynski A, Lauer M. Limo: Lidar-monocular visual odometry[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 7872-7879.

  • 代码:github.com/johannes-gra ;Video

67. LARVIO(多状态约束卡尔曼滤波的单目 VIO)

  • 论文:Qiu X, Zhang H, Fu W, et al. Monocular Visual-Inertial Odometry with an Unbiased Linear System Model and Robust Feature Tracking Front-End[J]. Sensors, 2019, 19(8): 1941.

  • 代码:github.com/PetWorm/LARV

  • 北航邱笑晨博士的一项工作

68. vig-init(垂直边缘加速视惯初始化)

  • 论文:Li J, Bao H, Zhang G. Rapid and Robust Monocular Visual-Inertial Initialization with Gravity Estimation via Vertical Edges[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 6230-6236.

  • 代码:github.com/zju3dv/vig-i

69. vilib(VIO 前端库)

  • 论文:Nagy B, Foehn P, Scaramuzza D. Faster than FAST: GPU-Accelerated Frontend for High-Speed VIO[J]. arXiv preprint arXiv:2003.13493, 2020.

  • 代码:github.com/uzh-rpg/vili

70. Kimera-VIO

  • 论文:A. Rosinol, M. Abate, Y. Chang, L. Carlone, Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping. IEEE Intl. Conf. on Robotics and Automation (ICRA), 2020.

  • 代码:github.com/MIT-SPARK/Ki

71. maplab(视惯建图框架)

  • 论文:Schneider T, Dymczyk M, Fehr M, et al. maplab: An open framework for research in visual-inertial mapping and localization[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1418-1425.

  • 代码:github.com/ethz-asl/map

  • 多会话建图,地图合并,视觉惯性批处理优化和闭环

72. lili-om:固态雷达惯性里程计与建图

  • 论文:Li K, Li M, Hanebeck U D. Towards high-performance solid-state-lidar-inertial odometry and mapping[J]. arXiv preprint arXiv:2010.13150, 2020.

  • 代码:github.com/KIT-ISAS/lil

73. CamVox:Lidar辅助视觉 SLAM

  • 论文:ZHU, Yuewen, et al. CamVox: A Low-cost and Accurate Lidar-assisted Visual SLAM System. arXiv preprint arXiv:2011.11357, 2020.

  • 代码:github.com/ISEE-Technol

五、Dynamic SLAM(8 项)

动态 SLAM 也是一个很值得研究的话题,这里不太好分类,很多工作用到了语义信息或者用来三维重建,收集的方案相对较少,欢迎补充 issue。

74. DynamicSemanticMapping(动态语义建图)

  • 论文:Kochanov D, Ošep A, Stückler J, et al. Scene flow propagation for semantic mapping and object discovery in dynamic street scenes[C]//Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016: 1785-1792.

  • 代码:github.com/ganlumomo/Dy ;wiki

75. DS-SLAM(动态语义 SLAM)

  • 论文:Yu C, Liu Z, Liu X J, et al. DS-SLAM: A semantic visual SLAM towards dynamic environments[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1168-1174.

  • 代码:github.com/ivipsourceco

76. Co-Fusion(实时分割与跟踪多物体)

  • 论文:Rünz M, Agapito L. Co-fusion: Real-time segmentation, tracking and fusion of multiple objects[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 4471-4478.

  • 代码:github.com/martinruenz/ ;Video

77. DynamicFusion

  • 论文:Newcombe R A, Fox D, Seitz S M. Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 343-352.

  • 代码:github.com/mihaibujanca

78. ReFusion(动态场景利用残差三维重建)

  • 论文:Palazzolo E, Behley J, Lottes P, et al. ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D Cameras Exploiting Residuals[J]. arXiv preprint arXiv:1905.02082, 2019.

  • 代码:github.com/PRBonn/refus ;Video

79. DynSLAM(室外大规模稠密重建)

  • 论文:Bârsan I A, Liu P, Pollefeys M, et al. Robust dense mapping for large-scale dynamic environments[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 7510-7517.

  • 代码:github.com/AndreiBarsan

  • 作者博士学位论文:Barsan I A. Simultaneous localization and mapping in dynamic scenes[D]. ETH Zurich, Department of Computer Science, 2017.

80. VDO-SLAM(动态物体感知的 SLAM)

  • 论文:Zhang J, Henein M, Mahony R, et al. VDO-SLAM: A Visual Dynamic Object-aware SLAM System[J]. arXiv preprint arXiv:2005.11052, 2020.(IJRR Under Review)

    • 相关论文

      • IROS 2020 Robust Ego and Object 6-DoF Motion Estimation and Tracking

      • ICRA 2020 Dynamic SLAM: The Need For Speed

  • 代码:github.com/halajun/VDO_ | video

六、Mapping(21 项)

针对建图的工作一方面是利用几何信息进行稠密重建,另一方面很多工作利用语义信息达到了很好的语义重建效果,三维重建、SFM 本身就是个很大的话题,开源代码也很多,以下方案收集地可能也不太全。

81. InfiniTAM(跨平台 CPU 实时重建)

  • 论文:Prisacariu V A, Kähler O, Golodetz S, et al. Infinitam v3: A framework for large-scale 3d reconstruction with loop closure[J]. arXiv preprint arXiv:1708.00783, 2017.

  • 代码:github.com/victorprad/I ;project page

82. BundleFusion

  • 论文:Dai A, Nießner M, Zollhöfer M, et al. Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-fly surface reintegration[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 76a.

  • 代码:github.com/niessner/Bun ;工程地址

83. KinectFusion

  • 论文:Newcombe R A, Izadi S, Hilliges O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]//2011 10th IEEE International Symposium on Mixed and Augmented Reality. IEEE, 2011: 127-136.

  • 代码:github.com/chrdiller/Ki

84. ElasticFusion

  • 论文:Whelan T, Salas-Moreno R F, Glocker B, et al. ElasticFusion: Real-time dense SLAM and light source estimation[J]. The International Journal of Robotics Research, 2016, 35(14): 1697-1716.

  • 代码:github.com/mp3guy/Elast

85. Kintinuous

  • ElasticFusion 同一个团队的工作,帝国理工 Stefan Leutenegger 谷歌学术

  • 论文:Whelan T, Kaess M, Johannsson H, et al. Real-time large-scale dense RGB-D SLAM with volumetric fusion[J]. The International Journal of Robotics Research, 2015, 34(4-5): 598-626.

  • 代码:github.com/mp3guy/Kinti

86. ElasticReconstruction

  • 论文:Choi S, Zhou Q Y, Koltun V. Robust reconstruction of indoor scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 5556-5565.

  • 代码:github.com/qianyizh/Ela ;作者主页

87. FlashFusion

  • 论文:Han L, Fang L. FlashFusion: Real-time Globally Consistent Dense 3D Reconstruction using CPU Computing[C]. RSS, 2018.

  • 代码(一直没放出来):github.com/lhanaf/Flash ;Project Page

88. RTAB-Map(激光视觉稠密重建)

  • 论文:Labbé M, Michaud F. RTAB‐Map as an open‐source lidar and visual simultaneous localization and mapping library for large‐scale and long‐term online operation[J]. Journal of Field Robotics, 2019, 36(2): 416-446.

  • 代码:github.com/introlab/rta ;Video ;project page

89. RobustPCLReconstruction(户外稠密重建)

  • 论文:Lan Z, Yew Z J, Lee G H. Robust Point Cloud Based Reconstruction of Large-Scale Outdoor Scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 9690-9698.

  • 代码:github.com/ziquan111/Ro ;Video

90. plane-opt-rgbd(室内平面重建)

  • 论文:Wang C, Guo X. Efficient Plane-Based Optimization of Geometry and Texture for Indoor RGB-D Reconstruction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019: 49-53.

  • 代码:github.com/chaowang15/p

91. DenseSurfelMapping(稠密表面重建)

  • 论文:Wang K, Gao F, Shen S. Real-time scalable dense surfel mapping[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 6919-6925.

  • 代码:github.com/HKUST-Aerial

92. surfelmeshing(网格重建)

  • 论文:Schöps T, Sattler T, Pollefeys M. Surfelmeshing: Online surfel-based mesh reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.

  • 代码:github.com/puzzlepaint/

93. DPPTAM(单目稠密重建)

  • 论文:Concha Belenguer A, Civera Sancho J. DPPTAM: Dense piecewise planar tracking and mapping from a monocular sequence[C]//Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst. 2015 (ART-2015-92153).

  • 代码:github.com/alejocb/dppt

  • 相关研究:基于超像素的单目 SLAM:Using Superpixels in Monocular SLAM ICRA 2014 ;谷歌学术

94. VI-MEAN(单目视惯稠密重建)

  • 论文:Yang Z, Gao F, Shen S. Real-time monocular dense mapping on aerial robots using visual-inertial fusion[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 4552-4559.

  • 代码:github.com/dvorak0/VI-M ;Video

95. REMODE(单目概率稠密重建)

  • 论文:Pizzoli M, Forster C, Scaramuzza D. REMODE: Probabilistic, monocular dense reconstruction in real time[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 2609-2616.

  • 原始开源代码:github.com/uzh-rpg/rpg_

  • 与 ORB-SLAM2 结合版本:github.com/ayushgaud/ORgithub.com/ayushgaud/OR

96. DeepFactors(实时的概率单目稠密 SLAM)

  • 帝国理工学院戴森机器人实验室

  • 论文:Czarnowski J, Laidlow T, Clark R, et al. DeepFactors: Real-Time Probabilistic Dense Monocular SLAM[J]. arXiv preprint arXiv:2001.05049, 2020.

  • 代码:github.com/jczarnowski/ (还未放出)

  • 其他论文:Bloesch M, Czarnowski J, Clark R, et al. CodeSLAM—learning a compact, optimisable representation for dense visual SLAM[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2560-2568.

97. probabilistic_mapping(单目概率稠密重建)

  • 港科沈邵劼老师团队

  • 论文:Ling Y, Wang K, Shen S. Probabilistic dense reconstruction from a moving camera[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 6364-6371.

  • 代码:github.com/ygling2008/p

  • 另外一篇稠密重建文章的代码一直没放出来 Github :Ling Y, Shen S. Real‐time dense mapping for online processing and navigation[J]. Journal of Field Robotics, 2019, 36(5): 1004-1036.

98. ORB-SLAM2 单目半稠密建图

  • 论文:Mur-Artal R, Tardós J D. Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM[C]//Robotics: Science and Systems. 2015, 2015.

  • 代码(本身没有开源,贺博复现的一个版本):github.com/HeYijia/ORB_

  • 加上线段之后的半稠密建图

    • 论文:He S, Qin X, Zhang Z, et al. Incremental 3d line segment extraction from semi-dense slam[C]//2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018: 1658-1663.

    • 代码:github.com/shidahe/semi

    • 作者在此基础上用于指导远程抓取操作的一项工作:github.com/atlas-jj/ORB

99. Voxgraph(SDF 体素建图)

  • 论文:Reijgwart V, Millane A, Oleynikova H, et al. Voxgraph: Globally Consistent, Volumetric Mapping Using Signed Distance Function Submaps[J]. IEEE Robotics and Automation Letters, 2019, 5(1): 227-234.

  • 代码:github.com/ethz-asl/vox

100. SegMap(三维分割建图)

  • 论文:Dubé R, Cramariuc A, Dugas D, et al. SegMap: 3d segment mapping using data-driven descriptors[J]. arXiv preprint arXiv:1804.09557, 2018.

  • 代码:github.com/ethz-asl/seg

101. OpenREALM:无人机实时建图框架

  • 论文:Kern A, Bobbe M, Khedar Y, et al. OpenREALM: Real-time Mapping for Unmanned Aerial Vehicles[J]. arXiv preprint arXiv:2009.10492, 2020.

  • 代码:github.com/laxnpander/O

七、Optimization(6 项)

个人感觉优化可能是 SLAM 中最难的一部分了吧 +_+ ,我们一般都是直接用现成的因子图、图优化方案,要创新可不容易,分享三川小哥的入坑指难。

102. 后端优化库

  • GTSAM:github.com/borglab/gtsa ;官网

  • g2o:github.com/RainerKuemme

  • ceres:ceres-solver.org/

103. ICE-BA

  • 论文:Liu H, Chen M, Zhang G, et al. Ice-ba: Incremental, consistent and efficient bundle adjustment for visual-inertial slam[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 1974-1982.

  • 代码:github.com/baidu/ICE-BA

104. minisam(因子图最小二乘优化框架)

  • 论文:Dong J, Lv Z. miniSAM: A Flexible Factor Graph Non-linear Least Squares Optimization Framework[J]. arXiv preprint arXiv:1909.00903, 2019.

  • 代码:github.com/dongjing3309 ; 文档

105. SA-SHAGO(几何基元图优化)

  • 论文:Aloise I, Della Corte B, Nardi F, et al. Systematic Handling of Heterogeneous Geometric Primitives in Graph-SLAM Optimization[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2738-2745.

  • 代码:srrg.gitlab.io/sashago-

106. MH-iSAM2(SLAM 优化器)

  • 论文:Hsiao M, Kaess M. MH-iSAM2: Multi-hypothesis iSAM using Bayes Tree and Hypo-tree[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 1274-1280.

  • 代码:bitbucket.org/rpl_cmu/m

107. MOLA(用于定位和建图的模块化优化框架)

  • 论文:Blanco-Claraco J L. A Modular Optimization Framework for Localization and Mapping[J]. Proc. of Robotics: Science and Systems (RSS), FreiburgimBreisgau, Germany, 2019, 2.

  • 代码:github.com/MOLAorg/mola ;Video ;使用文档


哇,你居然看完了,本文太长了,所以同时保存了一份 PDF 版供大家下载(13页)。

首发于:2020 年 03 月 31 日
Email:wuyanminmax@gmail.com
更新日志:
2020.03.31 补充 +1:TUM Basalt ,分类在 Sensor Fusion 中;
2020.04.04 补充 +1Limo,分类在 Sensor Fusion 中;
2020.04.04 补充 +1DynSLAM,分类在 Dynamic SLAM 中;
2020.04.25 补充 +2Map2DFusionCCM-SLAM,分类在 Geometric SLAM 中;
2020.04.25 补充 +2:北航 LARVIO、浙大 vig-init,分类在 Sensor Fusion 中;
2020.04.25 补充 +2GCNv2_SLAMsemantic_suma 分类在 Sematic/Deep SLAM;
2020.05.24 补充 +2vilibKimera-VIO 分类在 Sensor Fusion;
2020.05.24 补充 +1Voxgraph 分类在 Mapping;
2020.05.24 补充 +1Neural-SLAM 分类在 Sematic/Deep SLAM;
2020.05.24 补充 +1VPS-SLAM 分类在 Multi-Landmarks/Object SLAM;
2020.06.27 补充 +1maplab 分了在 Sensor Fusion 中;
2020.06.27 补充 +1SegMap 分了在 Mapping 中;
2020.07.27 补充 +1:ORB-SLAM3 分类在 Geometric SLAM 中(本文的第 100 项开源代码的位置献给 ORB-SLAM3 );
2020.08.27 补充 +1Structure-SLAM-PointLine 分类在 Multi-Landmarks/Object SLAM 中;
2020.08.27 补充 +1VDO-SLAM 分类在 Dynamic SLAM 中;
2021.02.14 补充 +1:OpenREALM 分类在 Mapping 中;
2021.02.14 补充 +1:PL-VINS 分类在 Multi-Landmarks/Object SLAM 中;
2021.02.14 补充 +2:lili-om、CamVox 分类在 Sensor Fusion 中;
2021.02.14 补充 +1:TartanVO 分类在 Semantic / Deep SLAM 中。


—版权声明—

来源:公众号羽林君,作者:小吴同学@知乎

仅用于学术分享,版权属于原作者。

若有侵权,请联系微信号:yiyang-sy 删除或修改!


—THE END—
浏览 196
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报