按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值

IT共享之家

共 1972字,需浏览 4分钟

 ·

2022-03-23 10:32

点击上方“Python共享之家”,进行关注

回复“资源”即可获赠Python学习资料

汉女输橦布,巴人讼芋田。

大家好,我是皮皮。

一、前言

前几天在Python星耀交流群有个叫【在下不才】的粉丝问了一个Pandas的问题,按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值,这里拿出来给大家分享下,一起学习。

二、解决过程

这个看上去倒是不太难,但是实现的时候,总是一看就会,一用就废。这里给出【瑜亮老师】的三个解法,一起来看看吧!

方法一:使用自定义函数

代码如下:

import pandas as pd

lv = [1, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3]
num = [122, 111, 222, 444, 555, 555, 333, 666, 666, 777, 888]
df = pd.DataFrame({'lv': lv, 'num': num})

def demean(arr):
    return arr - arr.mean()
# 按照"lv"列进行分组并计算出"num"列每个分组的平均值,然后"num"列内的每个元素减去分组平均值
df["juncha"] = df.groupby("lv")["num"].transform(demean)
print(df
# transform 也支持 lambda 函数,效果是一样的,更简洁一些# df["juncha"] = df.groupby("lv")["num"].transform(lambda x: x - x.mean())# print(df)

方法二:使用内置函数

代码如下:

import pandas as pd

lv = [1, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3]
num = [122, 111, 222, 444, 555, 555, 333, 666, 666, 777, 888]
df = pd.DataFrame({'lv': lv, 'num': num})


gp_mean = df.groupby('lv')["num"].mean().rename("gp_mean").reset_index()
df2 = df.merge(gp_mean)
df2["juncha"] = df2["num"] - df2["gp_mean"]
print(df2)

方法三:使用 transform

transform能返回完整数据,输出的形状和输入一致(输入是num列,输出也是一列),代码如下:

import pandas as pd

lv = [1, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3]
num = [122, 111, 222, 444, 555, 555, 333, 666, 666, 777, 888]
df = pd.DataFrame({'lv': lv, 'num': num})


# 方法三: 使用 transform。
df["gp_mean"] = df.groupby('lv')["num"].transform('mean')
df["juncha"] = df["num"] - df["gp_mean"]
print(df)
# 直接输出结果,省略分组平均值列
df["juncha"] = df["num"] - df.groupby('lv')["num"].transform('mean')
print(df)

这样问题就完美地解决啦!

后面他还想用类的方式写,不过看上去没有那么简单。

三、总结

大家好,我是皮皮。这篇文章主要分享了Pandas处理相关知识,基于粉丝提出的按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值的问题,给出了3个行之有效的方法,帮助粉丝顺利解决了问题。

最后感谢粉丝【在下不才】提问,感谢【德善堂小儿推拿-瑜亮老师】给出的具体解析和代码演示,感谢【月神】提供的思路,感谢【dcpeng】等人参与学习交流。

小伙伴们,快快用实践一下吧!如果在学习过程中,有遇到任何问题,欢迎加我好友,我拉你进Python学习交流群共同探讨学习。

------------------- End -------------------

往期精彩文章推荐:

欢迎大家点赞,留言,转发,转载,感谢大家的相伴与支持

想加入Python学习群请在后台回复【

万水千山总是情,点个【在看】行不行

浏览 40
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报