【Python】plottable:Python搞定表格可视化!
例如这样的,或者这样的,第一张图详细代码:
# 导入相关包
from pathlib import Path
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib.colors import LinearSegmentedColormap
from plottable import ColumnDefinition, Table
from plottable.cmap import normed_cmap
from plottable.formatters import decimal_to_percent
from plottable.plots import circled_image
plt.rcParams["font.family"] = ["DejaVu Sans"]
plt.rcParams["savefig.bbox"] = "tight"
# demo数据准备
cols = [
"team",
"points",
"group",
"spi",
"global_o",
"global_d",
"group_1",
"group_2",
"group_3",
"make_round_of_16",
"make_quarters",
"make_semis",
"make_final",
"win_league",
]
df = pd.read_csv(
"data/wwc_forecasts.csv",
usecols=cols,
)
colnames = [
"Team",
"Points",
"Group",
"SPI",
"OFF",
"DEF",
"1st Place",
"2nd Place",
"3rd Place",
"Make Rd Of 16",
"Make Quarters",
"Make Semis",
"Make Finals",
"Win World Cup",
]
col_to_name = dict(zip(cols, colnames))
flag_paths = list(Path("country_flags").glob("*.png"))
country_to_flagpath = {p.stem: p for p in flag_paths}
df[["spi", "global_o", "global_d"]] = df[["spi", "global_o",
"global_d"]].round(1)
df = df.rename(col_to_name, axis=1)
df = df.drop("Points", axis=1)
df.insert(0, "Flag", df["Team"].apply(lambda x: country_to_flagpath.get(x)))
df = df.set_index("Team")
# colormap准备
cmap = LinearSegmentedColormap.from_list(
name="bugw",
colors=["#ffffff", "#f2fbd2", "#c9ecb4", "#93d3ab", "#35b0ab"],
N=256)
team_rating_cols = ["SPI", "OFF", "DEF"]
group_stage_cols = ["1st Place", "2nd Place", "3rd Place"]
knockout_stage_cols = list(df.columns[-5:])
# table列个性化list,例如列名、列宽、字体、磅值等等
col_defs = ([
ColumnDefinition(
name="Flag",
title="Region",
textprops={"ha": "center"},
width=0.5,
plot_fn=circled_image,
),
ColumnDefinition(
name="Team",
textprops={
"ha": "left",
"weight": "bold"
},
width=1.5,
),
ColumnDefinition(
name="Group",
textprops={"ha": "center"},
width=0.75,
),
ColumnDefinition(
name="SPI",
group="Team Rating",
textprops={"ha": "center"},
width=0.75,
),
ColumnDefinition(
name="OFF",
width=0.75,
textprops={
"ha": "center",
"bbox": {
"boxstyle": "circle",
"pad": 0.35
},
},
cmap=normed_cmap(df["OFF"], cmap=matplotlib.cm.Blues, num_stds=2.5),
group="Team Rating",
),
ColumnDefinition(
name="DEF",
width=0.75,
textprops={
"ha": "center",
"bbox": {
"boxstyle": "circle",
"pad": 0.35
},
},
cmap=normed_cmap(df["DEF"], cmap=matplotlib.cm.Greens, num_stds=2.5),
group="Team Rating",
),
] + [
ColumnDefinition(
name=group_stage_cols[0],
title=group_stage_cols[0].replace(" ", "\n", 1),
formatter=decimal_to_percent,
group="Group Stage Chances",
border="left",
)
] + [
ColumnDefinition(
name=col,
title=col.replace(" ", "\n", 1),
formatter=decimal_to_percent,
group="Group Stage Chances",
) for col in group_stage_cols[1:]
] + [
ColumnDefinition(
name=knockout_stage_cols[0],
title=knockout_stage_cols[0].replace(" ", "\n", 1),
formatter=decimal_to_percent,
cmap=cmap,
group="Knockout Stage Chances",
border="left",
)
] + [
ColumnDefinition(
name=col,
title=col.replace(" ", "\n", 1),
formatter=decimal_to_percent,
cmap=cmap,
group="Knockout Stage Chances",
) for col in knockout_stage_cols[1:]
])
# plottable的Table方法制作表格
fig, ax = plt.subplots(figsize=(20, 22))
table = Table(
df,
column_definitions=col_defs,
row_dividers=True,
footer_divider=True,
ax=ax,
textprops={
"fontsize": 14
},
row_divider_kw={
"linewidth": 1,
"linestyle": (0, (1, 5))
},
col_label_divider_kw={
"linewidth": 1,
"linestyle": "-"
},
column_border_kw={
"linewidth": 1,
"linestyle": "-"
},
).autoset_fontcolors(colnames=["OFF", "DEF"])
往期精彩回顾 适合初学者入门人工智能的路线及资料下载 (图文+视频)机器学习入门系列下载 机器学习及深度学习笔记等资料打印 《统计学习方法》的代码复现专辑 机器学习交流qq群955171419,加入微信群请扫码
评论