又一个Jupyter神器,操作Excel自动生成Python代码!
点击关注上方“SQL数据库开发”,
设为“置顶或星标”,第一时间送达干货
Jupyter
对于表的处理真的是越来越方便了,很多库可以直接实现可视化操作,无需写代码。但是这还不够,最近看到一个神器叫Mito
,它真的是做到了无需写一行代码,而且手动的操作可以自动转换为代码,供后续批量化操作,这简直不要太爽。一、Mito是什么?
Mito
是Jupyter notebook
的一个插件,作用是编辑电子表格,并在编辑表格(带格式转换功能)时,可以生成相对应的Python
代码。Mito
和使用Excel
表格没什么太大区别,只需要掌握一些Mito
的自定义函数即可,然后它会自动生成pandas
处理表的代码。二、Mito 安装
Mito
的安装要求比较简单,有两个:
Python 3.6或更高版本 需要安装了Node
打开终端,直接pip安装:
pip install mitosheet
然后,安装JupyterLab
扩展管理器。这个命令可能需要运行个几分钟:
jupyter labextension install @jupyter-widgets/jupyterlab-manager@2
最后,启动JupyterLab
就完事了。
jupyter lab
也可以用conda
安装到一个虚拟环境里。
三、Mito 操作方法
创建一个表
import mitosheet
mitosheet.sheet()
导入数据
pandas
读入数据生成dataframe
给mitosheet
。如果不想写代码,也可以手动点导入按钮导入数据,导入数据代码会自动生成。# import Python packages
import mitosheet
import pandas as pd
# Create a simple dataframe to display
car_data = pd.DataFrame({'car': ['Toyota', 'Nissan', 'Honda', 'Mini Cooper', 'Saturn'], 'mph': [60, 50, 60, 75, 90], 'length': [10, 12, 13, 8, 9]})
# render the Mitosheet with car_data
mitosheet.sheet(car_data)
操作方法
Excel
一样,一般的两种方法。sum
、sumif
这种等等。公式法其实就是个孰能生巧的事。我看了下,Mito
中的函数不复杂,使用很容易上手。Mito
也提供了分析工具,比如合并、透视表、筛选、排序、保存分析等部分功能,都是点点点的操作。Mito
的合并功能可用于将数据集水平组合在一起。通过查找两个表关键列的匹配项,然后将这些匹配项数据组合到一行中。数据透视表
筛选
过滤器是单个条件,对于该列中的每个单元格,其评估结果为true或false。 过滤器组是结合了布尔运算符的过滤器聚合。
排序
保存分析
四、后话
Mito
的背后原理,这里不过多介绍,如果感兴趣可以参考这篇博客:Mito
的创作者是三位来自宾大的学霸 Aaron Diamond-Reivich、Jake Diamond-Reivich和Nate Rush,他们是在搞数据分析的时候,萌生了想要制作Mito
的想法。推荐阅读
后台回复关键字:1024,获取一份精心整理的技术干货
后台回复关键字:进群,带你进入高手如云的交流群
评论