2021科大讯飞-车辆贷款违约预测赛事 Top1方案!
共 5704字,需浏览 12分钟
·
2021-11-30 17:20
1. 引言
Hello,大家好。我是“摸鱼打比赛”队的wangli,首先介绍下自己吧,一枚半路出家的野生算法工程师。之所以起名字叫摸鱼打比赛,是因为当时5/6月份自己还处于业务交接没那么忙的一个状态中,然后想起自己也已经毕业两年,但对赛圈一直还是比较关注的,平日看到一些题目也会手痒,但奈何打工人下班之后惰性使然只想躺平,毕业之后始终没有好好打一场比赛,偶尔也会在深夜里问起自己:“廉颇老矣,尚能饭否”,就想着,这回我就利用下这段尚且不忙的日子好好打一场比赛吧。于是我就参加了这次的比赛,不仅侥幸获得了车贷这个小比赛的第一,然后还结识了一些好友,比如我尚在读研的队友陈兄,以及忙于秋招中的好友崔兄。真是收获满满~
那么,接下来我就给大家介绍一下这场比赛中,我的一些具体的解题思路和感悟。
2. 赛题背景
赛题链接:https://challenge.xfyun.cn/topic/info?type=car-loan
可以看到,这个赛题做的是车贷违约预测问题,基于,参赛选手们需要建立风险识别模型来预测可能违约的借款人。这道赛题,相比其他赛题,车贷违约预测这道题的难度是没那么大的,原因有二:
赛题难度:非常传统的风控逾期预测,二分类问题,很多其他比赛的代码可能稍微改一下就能套上来用; 竞争程度:赛题本身的奖金并不多,因此参赛的选手也不多。
我个人是前期在打商品推荐赛(同“摸鱼打比赛”ID)的时候顺便打一下这个比赛,在最后几天有认真去挖了一些特征。(说到这个基于用户画像的商品推荐赛,就有点惭愧,前期感觉自己还是可以一战的,一度是在Top 3的,后面8月开始由于工作太忙,复赛开始之后就一直没有提交,说到底还是自己时间管理能力太菜了。就看看国庆期间能不能有时间再做一下吧)
再说回这个比赛:
数据量的话还是可以的,其中 训练集15w,测试集3w 包含52个特征字段,各个字段主办方也是给了相应的解释 评估指标:F1 Score
所以,其实可以很快的写出一个baseline来,对于数据新手来说,是一个比较友好的比赛了。
3. 解题思路
这种偏数据挖掘的比赛的关键点在于如何基于对数据的理解抽象归纳出有用的特征,因此,我一开始做的时候,并没有想着说去套各种高大上的模型,而是通过对数据的分析去构造一些特征。如果不想往后看代码的话,我在这一章节会简单把我的整个方案讲一下:
正负样本分布:可以看到这道题的正负样本比为 82:18 这样,在风控里面其实已经属于正负样本分布较为平衡的数据了,所以我在比赛中,并没有刻意的去往正负样本不平衡这块去做,有做了一些过采样的尝试,但效果反而不增反降。
特征工程:
模型选取:
阈值选取:由于该题是用F1 Score作为评判标准的,因此,我们需要自己划一个阈值,然后决定哪些样本预测为正样本,哪些样本预测为负样本。在尝试了不同方案后,我们的方案基于oof的预测结果,选出一个在oof上表现最优的阈值,此时在榜上的效果是最佳的(千分位的提升)
融合策略:最后选定了两个模型来融合,一个是LightGBM,一个是XGBoost(哈哈哈,就很土有没有),然后,直接按预测概率加权融合的话效果是比较一般的,而按照其ranking值分位点化之后再加权融合效果会更好。效果而言,单模LGB最优是0.5892,XGB是在0.5872这边,按照概率加权最优是0.59011,按照排序加权最优是0.59038
其实主要思路和方案,就如同上述文字所描述的了。但看起来总是干巴巴的,如果你还对代码有兴趣的话,可以继续往下看。毕竟 Talk is Cheap, :)
4. 具体实现 & 代码详解
4.1 特征工程
target encoding/mean encoding,这里要注意的是,为了防止过拟合,需要分折来做
# 用来TG编码的特征:
TARGET_ENCODING_FETAS = [
'employment_type',
'branch_id',
'supplier_id',
'manufacturer_id',
'area_id',
'employee_code_id',
'asset_cost_bin'
]
# 具体实现:
def gen_target_encoding_feats(train, test, encode_cols, target_col, n_fold=10):
'''生成target encoding特征'''
# for training set - cv
tg_feats = np.zeros((train.shape[0], len(encode_cols)))
kfold = StratifiedKFold(n_splits=n_fold, random_state=1024, shuffle=True)
for _, (train_index, val_index) in enumerate(kfold.split(train[encode_cols], train[target_col])):
df_train, df_val = train.iloc[train_index], train.iloc[val_index]
for idx, col in enumerate(encode_cols):
target_mean_dict = df_train.groupby(col)[target_col].mean()
df_val[f'{col}_mean_target'] = df_val[col].map(target_mean_dict)
tg_feats[val_index, idx] = df_val[f'{col}_mean_target'].values
for idx, encode_col in enumerate(encode_cols):
train[f'{encode_col}_mean_target'] = tg_feats[:, idx]
# for testing set
for col in encode_cols:
target_mean_dict = train.groupby(col)[target_col].mean()
test[f'{col}_mean_target'] = test[col].map(target_mean_dict)
return train, test
年利率特征/分箱等特征:
def gen_new_feats(train, test):
'''生成新特征:如年利率/分箱等特征'''
# Step 1: 合并训练集和测试集
data = pd.concat([train, test])
# Step 2: 具体特征工程
# 计算二级账户的年利率
data['sub_Rate'] = (data['sub_account_monthly_payment'] * data['sub_account_tenure'] - data[
'sub_account_sanction_loan']) / data['sub_account_sanction_loan']
# 计算主账户的年利率
data['main_Rate'] = (data['main_account_monthly_payment'] * data['main_account_tenure'] - data[
'main_account_sanction_loan']) / data['main_account_sanction_loan']
# 对部分特征进行分箱操作
# 等宽分箱
loan_to_asset_ratio_labels = [i for i in range(10)]
data['loan_to_asset_ratio_bin'] = pd.cut(data["loan_to_asset_ratio"], 10, labels=loan_to_asset_ratio_labels)
# 等频分箱
data['asset_cost_bin'] = pd.qcut(data['asset_cost'], 10, labels=loan_to_asset_ratio_labels)
# 自定义分箱
amount_cols = [
'total_monthly_payment',
'main_account_sanction_loan',
'main_account_disbursed_loan',
'sub_account_sanction_loan',
'sub_account_disbursed_loan',
'main_account_monthly_payment',
'sub_account_monthly_payment',
'total_sanction_loan'
]
amount_labels = [i for i in range(10)]
for col in amount_cols:
total_monthly_payment_bin = [-1, 5000, 10000, 30000, 50000, 100000, 300000, 500000, 1000000, 3000000, data[col].max()]
data[col + '_bin'] = pd.cut(data[col], total_monthly_payment_bin, labels=amount_labels).astype(int)
# Step 3: 返回包含新特征的训练集 & 测试集
return data[data['loan_default'].notnull()], data[data['loan_default'].isnull()]
近邻欺诈特征(ID前后10个近邻的欺诈概率,其实可以更多不同尝试寻找最优的近邻数,但精力有限哈哈)
def gen_neighbor_feats(train, test):
'''产生近邻欺诈特征'''
if not os.path.exists('../user_data/neighbor_default_probs.pkl'):
# 该特征需要跑的时间较久,因此将其存成了pkl文件
neighbor_default_probs = []
for i in tqdm(range(train.customer_id.max())):
if i >= 10 and i < 199706:
customer_id_neighbors = list(range(i - 10, i)) + list(range(i + 1, i + 10))
elif i < 199706:
customer_id_neighbors = list(range(0, i)) + list(range(i + 1, i + 10))
else:
customer_id_neighbors = list(range(i - 10, i)) + list(range(i + 1, 199706))
customer_id_neighbors = [customer_id_neighbor for customer_id_neighbor in customer_id_neighbors if
customer_id_neighbor in train.customer_id.values.tolist()]
neighbor_default_prob = train.set_index('customer_id').loc[customer_id_neighbors].loan_default.mean()
neighbor_default_probs.append(neighbor_default_prob)
df_neighbor_default_prob = pd.DataFrame({'customer_id': range(0, train.customer_id.max()),
'neighbor_default_prob': neighbor_default_probs})
save_pkl(df_neighbor_default_prob, '../user_data/neighbor_default_probs.pkl')
else:
df_neighbor_default_prob = load_pkl('../user_data/neighbor_default_probs.pkl')
train = pd.merge(left=train, right=df_neighbor_default_prob, on='customer_id', how='left')
test = pd.merge(left=test, right=df_neighbor_default_prob, on='customer_id', how='left')
return train, test
最终我只选取了47维特征:
USED_FEATS = [
'customer_id',
'neighbor_default_prob',
'disbursed_amount',
'asset_cost',
'branch_id',
'supplier_id',
'manufacturer_id',
'area_id',
'employee_code_id',
'credit_score',
'loan_to_asset_ratio',
'year_of_birth',
'age',
'sub_Rate',
'main_Rate',
'loan_to_asset_ratio_bin',
'asset_cost_bin',
'employment_type_mean_target',
'branch_id_mean_target',
'supplier_id_mean_target',
'manufacturer_id_mean_target',
'area_id_mean_target',
'employee_code_id_mean_target',
'asset_cost_bin_mean_target',
'credit_history',
'average_age',
'total_disbursed_loan',
'main_account_disbursed_loan',
'total_sanction_loan',
'main_account_sanction_loan',
'active_to_inactive_act_ratio',
'total_outstanding_loan#39;,
'main_account_outstanding_loan',
'Credit_level',
'outstanding_disburse_ratio',
'total_account_loan_no',
'main_account_tenure',
'main_account_loan_no',
'main_account_monthly_payment',
'total_monthly_payment',
'main_account_active_loan_no',
'main_account_inactive_loan_no',
'sub_account_inactive_loan_no',
'enquirie_no',
'main_account_overdue_no',
'total_overdue_no',
'last_six_month_defaulted_no'
]
4.2 模型训练
LightGBM(十折效果更优)
def train_lgb_kfold(X_train, y_train, X_test, n_fold=5):
'''train lightgbm with k-fold split'''
gbms = []
kfold = StratifiedKFold(n_splits=n_fold, random_state=1024, shuffle=True)
oof_preds = np.zeros((X_train.shape[0],))
test_preds = np.zeros((X_test.shape[0],))
for fold, (train_index, val_index) in enumerate(kfold.split(X_train, y_train)):
logging.info(f'############ fold {fold} ###########')
X_tr, X_val, y_tr, y_val = X_train.iloc[train_index], X_train.iloc[val_index], y_train[train_index], y_train[val_index]
dtrain = lgb.Dataset(X_tr, y_tr)
dvalid = lgb.Dataset(X_val, y_val, reference=dtrain)
params = {
'objective': 'binary',
'metric': 'auc',
'num_leaves': 64,
'learning_rate': 0.02,
'min_data_in_leaf': 150,
'feature_fraction': 0.8,
'bagging_fraction': 0.7,
'n_jobs': -1,
'seed': 1024
}
gbm = lgb.train(params,
dtrain,
num_boost_round=1000,
valid_sets=[dtrain, dvalid],
verbose_eval=50,
early_stopping_rounds=20)
oof_preds[val_index] = gbm.predict(X_val, num_iteration=gbm.best_iteration)
test_preds += gbm.predict(X_test, num_iteration=gbm.best_iteration) / kfold.n_splits
gbms.append(gbm)
return gbms, oof_preds, test_preds
XGBoost
def train_xgb_kfold(X_train, y_train, X_test, n_fold=5):
'''train xgboost with k-fold split'''
gbms = []
kfold = StratifiedKFold(n_splits=10, random_state=1024, shuffle=True)
oof_preds = np.zeros((X_train.shape[0],))
test_preds = np.zeros((X_test.shape[0],))
for fold, (train_index, val_index) in enumerate(kfold.split(X_train, y_train)):
logging.info(f'############ fold {fold} ###########')
X_tr, X_val, y_tr, y_val = X_train.iloc[train_index], X_train.iloc[val_index], y_train[train_index], y_train[val_index]
dtrain = xgb.DMatrix(X_tr, y_tr)
dvalid = xgb.DMatrix(X_val, y_val)
dtest = xgb.DMatrix(X_test)
params={
'booster':'gbtree',
'objective': 'binary:logistic',
'eval_metric': ['logloss', 'auc'],
'max_depth': 8,
'subsample':0.9,
'min_child_weight': 10,
'colsample_bytree':0.85,
'lambda': 10,
'eta': 0.02,
'seed': 1024
}
watchlist = [(dtrain, 'train'), (dvalid, 'test')]
gbm = xgb.train(params,
dtrain,
num_boost_round=1000,
evals=watchlist,
verbose_eval=50,
early_stopping_rounds=20)
oof_preds[val_index] = gbm.predict(dvalid, iteration_range=(0, gbm.best_iteration))
test_preds += gbm.predict(dtest, iteration_range=(0, gbm.best_iteration)) / kfold.n_splits
gbms.append(gbm)
return gbms, oof_preds, test_preds
4.3 模型融合与阈值选取
def gen_submit_file(df_test, test_preds, thres, save_path):
df_test['test_preds_binary'] = np.where(test_preds > thres, 1, 0)
df_test_submit = df_test[['customer_id', 'test_preds_binary']]
df_test_submit.columns = ['customer_id', 'loan_default']
print(f'saving result to: {save_path}')
df_test_submit.to_csv(save_path, index=False)
print('done!')
return df_test_submit
def gen_thres_new(df_train, oof_preds):
df_train['oof_preds'] = oof_preds
quantile_point = df_train['loan_default'].mean()
thres = df_train['oof_preds'].quantile(1 - quantile_point)
_thresh = []
for thres_item in np.arange(thres - 0.2, thres + 0.2, 0.01):
_thresh.append(
[thres_item, f1_score(df_train['loan_default'], np.where(oof_preds > thres_item, 1, 0), average='macro')])
_thresh = np.array(_thresh)
best_id = _thresh[:, 1].argmax()
best_thresh = _thresh[best_id][0]
print("阈值: {}\n训练集的f1: {}".format(best_thresh, _thresh[best_id][1]))
return best_thresh
# 结果
df_oof_res = pd.DataFrame({'customer_id': train['customer_id'],
'oof_preds_xgb': oof_preds_xgb,
'oof_preds_lgb': oof_preds_lgb,
'loan_default': train['loan_default']
})
# 模型融合
df_oof_res['xgb_rank'] = df_oof_res['oof_preds_xgb'].rank(pct=True)
df_oof_res['lgb_rank'] = df_oof_res['oof_preds_lgb'].rank(pct=True)
df_oof_res['preds'] = 0.31 * df_oof_res['xgb_rank'] + 0.69 * df_oof_res['lgb_rank']
# 得到最优阈值
thres = gen_thres_new(df_oof_res, df_oof_res['preds'])
df_test_res = pd.DataFrame({'customer_id': test['customer_id'],
'test_preds_xgb': test_preds_xgb,
'test_preds_lgb': test_preds_lgb})
df_test_res['xgb_rank'] = df_test_res['test_preds_xgb'].rank(pct=True)
df_test_res['lgb_rank'] = df_test_res['test_preds_lgb'].rank(pct=True)
df_test_res['preds'] = 0.31 * df_test_res['xgb_rank'] + 0.69 * df_test_res['lgb_rank']
# 结果产出
df_submit = gen_submit_file(df_test_res, df_test_res['preds'], thres,
save_path='../prediction_result/result.csv')