【GNN】2022年最新3篇GNN领域综述!

共 1750字,需浏览 4分钟

 ·

2022-03-03 01:45


本文分享3篇关于图神经网络(GNN)的相关综述:
第1篇是对联邦图神经网络的调研,将目前的工作根据三层分类法进行了划分,即根据数据的原始存在形式、联邦学习的常规设置进行了分类介绍;

第2篇文献则是对几何等变图神经网络的调研,其根据GNN中的消息传递和聚合方式将现有的方法分为三类进行介绍;

第3篇文献则是对异质图神经网络的调研。


1. Federated Graph Neural Networks: Overview, Techniques and Challenges.

论文地址:https://arxiv.org/pdf/2202.07256

摘要:

图神经网络在实际应用中具有强大的数据处理能力,因此受到了广泛的关注。然而,随着社会越来越关注数据隐私,GNN面临着适应这种新常态的需要。这导致了近年来联邦图神经网络(Federated Graph Neural Network,简称FedGNNs)研究的迅速发展。尽管这一跨学科领域前景广阔,但对感兴趣的研究人员来说具有很高的挑战性。在这个话题上缺乏有见地的调研只会加剧这个问题。
在这篇论文中,我们通过提供这一新兴领域的全面调研来弥补这一差距。我们提出了关于FedGNN文献的一个独特的三层分类法(如图1所示),以提供一个清晰的视角来了解GNN在联邦学习(FL)环境中是如何工作的。它通过分析图数据如何在FL设置中表现自己,如何在不同的FL系统架构下进行GNN训练,如何在不同的数据竖井中进行图数据重叠程度,以及如何在不同的FL设置下进行GNN聚合,将现有的工作纳入视野。通过对现有工作的优势和局限性的讨论,我们展望了未来的研究方向,可以帮助构建更健壮、动态、高效和可解释的联邦图神经网络。


2. Geometrically Equivariant Graph Neural Networks: A Survey.

论文地址:https://arxiv.org/pdf/2202.07230

摘要:

许多科学问题都要求以几何图形的形式处理数据。与一般图形数据不同,几何图形展示了平移、旋转和/或反射的对称性。研究人员利用这种归纳偏差,开发了几何等变图神经网络(GNN),以更好地表征几何图形的几何和拓扑。尽管取得了丰硕的成果,但仍缺乏对等变GNN进展的综述,这反过来阻碍了等变GNN的进一步发展。为此,基于必要而简明的数学基础,我们根据GNN中的消息传递和聚合的表示方式,将现有的方法分为三类。我们也总结了基准和相关的数据集,以便于以后的研究,为方法学的发展和实验评估。并对未来可能的发展方向进行了展望。

3. Graph Neural Networks for Graphs with Heterophily: A Survey.

论文地址:https://arxiv.org/pdf/2202.07082

摘要:

近年来,图神经网络(GNN)得到了迅速的发展,为无数的图分析任务和应用提供了便利。一般来说,大多数GNN依赖于同质性假设,即属于同一类的节点更有可能被连接。然而,作为现实世界众多场景中普遍存在的图属性,异质性(即具有不同标签的节点往往被链接)严重限制了定制同质GNN的性能。因此,GNN for Heterophilic Graphs在这个社区中得到了越来越多的关注。据我们所知,本文首次对异质图的gnn作了一个全面的综述。具体来说,我们提出了一个系统的分类法,该分类法本质上支配着现有的亲异GNN模型,并对其进行了一般性的总结和详细的分析。此外,我们总结了主流的异亲图基准,以促进稳健和公平的评估。最后,我们指出了在异亲图研究和应用方面的潜在发展方向。

往期精彩回顾




浏览 44
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报