为了这个GIF,我专门建了一个网站

机器学习算法与Python实战

共 5364字,需浏览 11分钟

 ·

2021-12-28 23:14

↓↓↓点击关注,回复资料,10个G的惊喜

这个叫条形竞赛图,非常适合制作随时间变动的数据可视化动图。

我已经用streamlit+bar_chart_race实现了,然后白嫖了heroku的服务器,大家通过下面的网址上传csv格式的表格就可以轻松制作条形竞赛图,生成的视频可以保存本地。

https://bar-chart-race-app.herokuapp.com/

本文我将实现过程介绍一下,白嫖服务器+部署留在下期再讲。

纯matplotlib实现

注:以下所有实现方式都需要提前安装ffmpeg,安装方式我之前在决策树可视化一文中有介绍

matplotlib实现bar-chart-race很简单,直接上代码

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import matplotlib.animation as animation
from IPython.display import HTML
url = 'https://gist.githubusercontent.com/johnburnmurdoch/4199dbe55095c3e13de8d5b2e5e5307a/raw/fa018b25c24b7b5f47fd0568937ff6c04e384786/city_populations'
df = pd.read_csv(url, usecols=['name''group''year''value'])
colors = dict(zip(
    ["India""Europe""Asia""Latin America""Middle East""North America""Africa"],
    ["#adb0ff""#ffb3ff""#90d595""#e48381""#aafbff""#f7bb5f""#eafb50"]
))
group_lk = df.set_index('name')['group'].to_dict()
fig, ax = plt.subplots(figsize=(15, 8))

def draw_barchart(current_year):
    dff = df[df['year'].eq(current_year)].sort_values(by='value', ascending=True).tail(10)
    ax.clear()
    ax.barh(dff['name'], dff['value'], color=[colors[group_lk[x]] for x in dff['name']])
    dx = dff['value'].max() / 200
    for i, (value, name) in enumerate(zip(dff['value'], dff['name'])):
        ax.text(value-dx, i,     name,           size=14, weight=600, ha='right', va='bottom')
        ax.text(value-dx, i-.25, group_lk[name], size=10, color='#444444', ha='right', va='baseline')
        ax.text(value+dx, i,     f'{value:,.0f}',  size=14, ha='left',  va='center')
    ax.text(1, 0.4, current_year, transform=ax.transAxes, color='#777777', size=46, ha='right', weight=800)
    ax.text(0, 1.06, 'Population (thousands)', transform=ax.transAxes, size=12, color='#777777')
    ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
    ax.xaxis.set_ticks_position('top')
    ax.tick_params(axis='x', colors='#777777', labelsize=12)
    ax.set_yticks([])
    ax.margins(0, 0.01)
    ax.grid(which='major', axis='x', linestyle='-')
    ax.set_axisbelow(True)
    ax.text(0, 1.15, 'The most populous cities in the world from 1500 to 2018',
            transform=ax.transAxes, size=24, weight=600, ha='left', va='top')
    ax.text(1, 0, 'by @pratapvardhan; credit @jburnmurdoch', transform=ax.transAxes, color='#777777', ha='right',
            bbox=dict(facecolor='white', alpha=0.8, edgecolor='white'))
    plt.box(False)
    
fig, ax = plt.subplots(figsize=(15, 8))
animator = animation.FuncAnimation(fig, draw_barchart, frames=range(1900, 2019))
HTML(animator.to_jshtml())

核心是定义draw_barchart函数绘制当前图表的样式,然后用animation.FuncAnimation重复调用draw_barchart来制作动画,最后用animator.to_html5_video()animator.save()保存GIF/视频。

xkcd手绘风格

我们也可以用matplotlib.pyplot.xkcd函数绘制XKCD风格的图表,方法也很简单,只需把上面的代码最后一段加上一行

with plt.xkcd():
    fig, ax = plt.subplots(figsize=(15, 8))
    animator = animation.FuncAnimation(fig, draw_barchart, frames=range(1900, 2019))
    HTML(animator.to_jshtml())

bar_chart_race库极简实现

如果嫌麻烦,还可以使用一个库「Bar Chart Race」,堪称Python界最强的动态可视化包。

GitHub地址:https://github.com/dexplo/bar_chart_race

目前主要有0.1和0.2两个版本,0.2版本添加动态曲线图以及Plotly实现的动态条形图。

通过pip install bar_chart_race也只能到0.1版本,因此需要从GitHub上下载下来,再进行安装。

git clone https://github.com/dexplo/bar_chart_race

使用起来就是极简了,三行代码即可实现

import bar_chart_race as bcr
# 获取数据
df = bcr.load_dataset('covid19_tutorial')
# 生成GIF图像
bcr.bar_chart_race(df, 'covid19_horiz.gif')

实际上bar_chart_race还有很多参数可以输出不同形态的gif

bcr.bar_chart_race(
    df=df,
    filename='covid19_horiz.mp4',
    orientation='h',
    sort='desc',
    n_bars=6,
    fixed_order=False,
    fixed_max=True,
    steps_per_period=10,
    interpolate_period=False,
    label_bars=True,
    bar_size=.95,
    period_label={'x': .99, 'y': .25, 'ha''right''va''center'},
    period_fmt='%B %d, %Y',
    period_summary_func=lambda v, r: {'x': .99, 'y': .18,
                                      's': f'Total deaths: {v.nlargest(6).sum():,.0f}',
                                      'ha''right''size': 8, 'family''Courier New'},
    perpendicular_bar_func='median',
    period_length=500,
    figsize=(5, 3),
    dpi=144,
    cmap='dark12',
    title='COVID-19 Deaths by Country',
    title_size='',
    bar_label_size=7,
    tick_label_size=7,
    shared_fontdict={'family' : 'Helvetica''color' : '.1'},
    scale='linear',
    writer=None,
    fig=None,
    bar_kwargs={'alpha': .7},
    filter_column_colors=False)  

比如以下几种

更详细的用法大家可以查阅官方文档

地址:https://www.dexplo.org/bar_chart_race/

streamlit+bar_chart_race

streamlit是我最近特别喜欢玩的一个机器学习应用开发框架,它能帮你不用懂得复杂的HTML,CSS等前端技术就能快速做出来一个炫酷的Web APP。

我之前开发的决策树挑西瓜就是使用了streamlit

下面是streamlit+bar_chart_race整体结构

核心是app.py,代码如下:

from bar_chart_race import bar_chart_race as bcr
import pandas as pd
import streamlit as st
import streamlit.components.v1 as components

st.title('Bar Chart Race', anchor=None)
uploaded_file = st.file_uploader(""type="csv")

if uploaded_file is not None:
    df = pd.read_csv(uploaded_file,sep=',', encoding='gbk')
    df = df.set_index("date")
    st.write(df.head(6))
    bcr_html = bcr.bar_chart_race(df=df, n_bars=10)
    components.html(bcr_html.data, width=800, height=600)

最终效果大家亲自体验吧:

https://bar-chart-race-app.herokuapp.com/

三连在看,年入百万。下期开讲白嫖服务器+部署,敬请期待。

推荐阅读

  1. 决策树可视化,被惊艳到了!
  2. 开发机器学习APP,太简单了
  3. 周志华教授:关于深度学习的一点思考
  4. 200 道经典机器学习面试题总结
  5. 卷积神经网络(CNN)数学原理解析
  6. 收手吧,华强!我用机器学习帮你挑西瓜


如有收获,欢迎三连👇

浏览 46
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报