强推理模型书生InternThinker开放体验:自主生成高智力密度数据、具备元动作思考能力|通专融合探索新进展
共 2282字,需浏览 5分钟
·
2024-11-27 09:00
上海人工智能实验室(上海AI实验室)致力于通过“通专融合”路径探索开放、可控、可信的通用人工智能(AGI),其关键技术之一在于同步提升深度推理与专业泛化能力。
2024年11月25日,上海AI实验室展示了自主生成高智力密度数据、具备元动作思考能力的“模型”等一系列创新进展,并开放强推理模型书生InternThinker试用体验。该模型具备长思维能力,并能在推理过程中进行自我反思和纠正,从而在数学、代码、推理谜题等多种复杂推理任务上取得更优结果。
试用链接:https://internlm-chat.intern-ai.org.cn(点击文末“阅读原文”直达,登录后点击左侧InternThinker即可体验)。
在OpenAI o1模型发布之前,上海AI实验室就已开展了相关技术的独创性探索与实践:在训练数据侧,在国内率先开发出大规模合成数据技术;在任务场景侧,新模型在数学、代码、推理谜题等多种场景都能体现出较强的推理能力,并具备一定的任务泛化性。
上海AI实验室的研究团队创新性地设计了元动作思考范式来引导模型的搜索空间,使模型更高效地习得和产生多样化的推理策略组合;基于通专融合的方式进行数据合成,并通过构建大规模沙盒环境获取反馈,在不依赖o1这类已有强推理模型的情况下,实现高质量思维链的独立构建,并大幅提升模型的复杂任务处理性能。
强大的推理能力是迈向通用人工智能的重要基础,今年7月发布的书生·浦语2.5实现了开源模型中领先的推理能力,InternThinker则使大模型的推理能力再上新台阶。下一步,上海AI实验室将把相关技术融入下一代书生大模型,并继续沿着通专融合发展路径,通过开源与产学研各界共同推动技术进步。
“元动作”思考:提升推理策略习得效率
“通专融合”探索高密度监督数据路径
高密度监督数据路径框架
体验案例