4款Pandas自动数据分析神器

共 2612字,需浏览 6分钟

 ·

2021-12-22 15:53

我们做数据分析,在第一次拿到数据集的时候,一般会用统计学或可视化方法来了解原始数据。

老表周三福利-文末赠书三本

了解列数、行数、取值分布、缺失值、列之间的相关关系等等,这个过程叫做 EDA(Exploratory Data Analysis,探索性数据分析)。

如果你现在做EDA还在用pandas一行行写代码,那么福音来了!

目前已经有很多EDA工具可以自动产出基础的统计数据和图表,能为我们节省大量时间。

本文会对比介绍 4 款常用的EDA工具,最后一款绝了,完全是抛弃代码的节奏。

正式介绍这些工具之前,先来加载数据集

import numpy as np
import pandas as pd
iris = pd.read_csv('iris.csv')
iris

iris是下面用到的数据集,是一个150行 * 4列的 DataFrame。

1. PandasGUI

PandasGUI提供数据预览、筛选、统计、多种图表展示以及数据转换。

# 安装
# pip install pandasgui
from pandasgui import show

show(iris)
PandasGUI操作界面

PandasGUI更侧重数据展示,提供了10多种图表,通过可视的方式配置。

但数据统计做的比较简单,没有提供缺失值、相关系数等指标,数据转换部分也只开放了一小部分接口。

2. Pandas Profiling

Pandas Profiling 提供了整体数据概况、每列的详情、列之间的关图、列之间的相关系数。

# 安装:
# pip install -U pandas-profiling
# jupyter nbextension enable --py widgetsnbextension

from pandas_profiling import ProfileReport

profile = ProfileReport(iris, title='iris Pandas Profiling Report', explorative=True)
profile
Pandas Profiling操作界面

每列的详情包括:缺失值统计、去重计数、最值、平均值等统计指标和取值分布的柱状图。

列之间的相关系数支持Spearman、Pearson、Kendall 和 Phik 4 种相关系数算法。

与 PandasGUI 相反,Pandas Profiling没有丰富的图表,但提供了非常多的统计指标以及相关系数。

3. Sweetviz

SweetvizPandas Profiling类似,提供了每列详细的统计指标、取值分布、缺失值统计以及列之间的相关系数。

# 安装
# pip install sweetviz

import sweetviz as sv

sv_report = sv.analyze(iris)
sv_report.show_html()
Sweetviz操作界面

Sweetviz还有有一个非常好的特性是支持不同数据集的对比,如:训练数据集和测试数据集的对比。

Sweetviz数据集对比

蓝色和橙色代表不同的数据集,通过对比可以清晰发现数据集之前的差异。

4. dtale

最后重磅介绍dtale,它不仅提供丰富图表展示数据,还提供了很多交互式的接口,对数据进行操作、转换。

dtale操作界面

dtale的功能主要分为三部分:数据操作数据可视化高亮显示

4.1 数据操作(Actions)

dtalepandas的函数包装成可视化接口,可以让我们通过图形界面方式来操作数据。

# pip install dtale

import dtale

d = dtale.show(iris)
d.open_browser()
Actions

右半部分图是左边图的中文翻译,用的是 Chrome 自动翻译,有些不是很准确。

举一个数据操作的例子。

Summarize Data

上图是Actions菜单中Summarize Data的功能,它提供了对数据集汇总操作的接口。

上图我们选择按照species列分组,计算sepal_width列的平均值,同时可以看到左下角dtale已经自动为该操作生成了pandas代码。

4.2 数据可视化(Visualize)

提供比较丰富的图表,对每列数据概况、重复行、缺失值、相关系数进行统计和展示。

Visualize

举一个数据可视化的例子。

Describe

上图是Visualize菜单中Describe的功能,它可以统计每列的最值、均值、标准差等指标,并提供图表展示。

右侧的Code Export可以查看生成这些数据的代码。

4.3 高亮显示(Highlight)

对缺失值、异常值做高亮显示,方便我们快速定位到异常的数据。

Highlight

上图显示了将sepal_width字段的异常值。

dtale非常强大,功能也非常多,大家可以多多探索、挖掘。

最后,简单总结一下。如果探索的数据集侧重数据展示,可以选PandasGUI;如果只是简单了解基本统计指标,可以选择Pandas ProfilingSweetviz;如果需要做深度的数据探索,那就选择dtale

如果本文对你有用就点个 在看 鼓励一下吧。

老表每周三赠书

图书介绍Python量化金融编程从入门到精通本书先从量化交易的基本概念讲起,然后讲解Python的基本语法及常见库的使用,在每章节的学习中都以金融量化为实例,并在后结合实战项目来进行学习和巩固,读者不但可以系统地学习Python编程的相关知识,而且还能学习到Python在量化交易场景下的应用。

点击下方卡片直接购买学习

赠书规则给本文点赞+本周想对自己说的一句话或者随意留言点击下方卡片,关注老表小号「简说编程,回复:周三福利,既可以参与赠书活动送2,另外我将从留言中随机选一位,赠书1本(一定要留言呐,留言满100后,将无法精选)。

关注后,回复:周三福利

⚠️注】同一读者同一月内最多只能获得一本赠书;必须在收到赠书后学习完图书内容/投稿学习笔记一篇后才能获得下一本赠书。


如何找到我:


浏览 74
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报