通俗的讲下数据分析中协方差和相关系数
Part1 方差
X变大,Y也变大,说明两个变量是同向变化的,这时协方差就是正的。 X变大,Y变小,说明两个变量是反向变化的,这时协方差就是负的。 并且从数值大小来看,协方差的绝对值越大,则两个变量同向或反向的程度也越大,即有较强的相关。
若协方差为正,则X和Y同向变化; 反之协方差为负,则反向变化; 协方差绝对值越大表示同向或反向的程度越深。
Part2 相关系数
当他们的相关系数为1时,说明两个变量线性相关程度最大,两个变量存在线性关系。 随着相关系数减小,两个变量相关程度也变小。 当相关系数为0时,两个变量的线性无关,但要注意,无关不一定独立。 当相关系数继续变小,小于0时,两个变量开始出现反向相关。 当相关系数为-1时,说明两个变量线性相关程度也最强,不过是相反的线性相关,反相变化。
评论