Science | MIT胡脊梁/Jeff Gore等揭示微生物生态系统的相变(刘洋彧/...

生信宝典

共 13144字,需浏览 27分钟

 · 2022-10-09


复杂生态系统动力学中涌现的相变

Emergent phases of ecological diversity and dynamics mapped in microcosms

bc0e98a7e527bb6686654f197020047d.webp

Report,2022-10-7,Science, [IF 63.7]

DOI:https://doi.org/10.1126/science.abm7841

原文链接: https://www.science.org/doi/10.1126/science.abm7841

第一作者: Jiliang Hu  (胡脊梁)

通讯作者: Jeff Gore

主要单位: 1. Physics of Living Systems, Department of Physics,Massachusetts Institute of Technology, Cambridge, MA02139, USA. 

2. Department of Mechanical Engineering,Massachusetts Institute of Technology, Cambridge, MA02139, USA.

3. CIRAD, UMR PHIM, 34090 Montpellier, France. 

4. PHIM Plant Health Institute, University of Montpellier,CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France.

5. Department of Physics, Technion—Israel Institute ofTechnology, Haifa 3200003, Israel.

- 导语 -

生态学致力于理解自然生态系统中的多样化的物种和复杂的动力学行为,然而科学家长期缺乏描述和预测生物多样性和生态动力学的统一框架。MIT物理系的胡脊梁和Jeff Gore等科学家结合理论和微生物群落实验,证明只需要掌握少量群落尺度的控制变量,就可以预测复杂生态系统的行为。热力学描述大量气体分子的行为只需要温度和压强等少数涌现的状态变量,而不需要知道每个分子的坐标和速度。Jeff Gore等人在生态网络中发现了类似的粗粒化描述方法,他们的实验和理论结果表明,只需要知道物种数量和平均种间相互作用强度这两个粗粒化参数,就可以预测生态群落中涌现的动力学相位以及相变。物种数量和平均种间相互作用的增加会导致群落在三个涌现的动力学相之间发生相变,从所有物种稳定共存相,转变到部分物种稳定共存相,最终转变到物种数量随时间持续震荡相。他们还发现高物种多样性和群落持续震荡之间存在正反馈。相关成果发表在知名期刊Science

研究领域:生态学,系统生物学,复杂动力系统

39584a8907da7e2606def29af71009e2.webp

- 背景 -

生态系统的动力学和物种多样性

大量物种在自然界共存并相互作用,组成复杂的生态群落。生态学的核心挑战之一是理解大量物种如何共存,他们作为群落的复杂动力学行为,以及这些行为如何塑造生态系统的功能。关于物种多样性是增加还是减弱种群稳定性存在长期的争论。生态学家通过观察自然群落,发现很多环境因素可以同时影响物种多样性和群落稳定性,因此很难解析两个变量之间的因果关系。实验室可控环境下的实验可以有效避免环境因素的随机干扰,从而研究群落本征属性,例如种间相互作用对于物种多样性和种群稳定性的影响。科学家在包含少量物种的实验室群落中观察到了可预测的稳态以及周期性震荡,并且分析了不同种间作用关系的功能,例如捕食关系,竞争关系和共生关系。对于大量物种共存在实验室生态群落,由于无法测量所有生物学细节(种间相互作用,生长率和环境容纳量等),一个自然的问题是我们是否可能借助简单少量的粗粒化参数去预测复杂群落的生物多样性和动力学?


Robert May和其他先驱的理论学家探索了通过少量粗粒化参数(例如物种数量和种间相互作用强度的统计分布)去预测复杂生态网络的行为。他们的工作展示大量物种和强烈的种间相互作用会导致群落失去稳定性,但是对于稳定性之外群落的复杂行为还缺乏理解,例如如何理解物种多样性,混沌震荡,以及群落动力学和多样性的相互作用。在这项工作中,胡脊梁和Jeff Gore等科学家试图在理论和实验中控制物种数量和种间相互作用强度,并揭示物种多样性和群落稳定性之间的关系。

- 结果 -

群落动力学和生物多样性的相图

作者借助generalized Lotka-Volterra model研究了不同参数下群落动力学行为的变化。模拟的结果显示增加物种数量和平均种间相互作用强度,群落总是会从所有物种稳定共存发生第一次二阶相变,转变到部分物种灭绝的稳定状态,最终群落会发生第二次相变,从稳定态转变到物种数量持续震荡的动力学相。在模拟中作者随机按照一定统计分布随机生成了种间相互作用矩阵,并证明动力学相和相变不随着统计分布的改变而发生改变。借助随机矩阵理论和统计物理的方法,作者可以得到两个相边界的解析解,和计算结果完全吻合。理论分析的结果显示,只需要物种数量,种间相互作用分布的一阶矩和二阶矩这三个粗粒化参数就可以预测复杂群落的多样性和稳定性。作者还进一步验证了动力学相图在不同的模型假设(例如考虑生态网络中的捕食者-被捕食者,互利共生,竞争关系等)下都具有鲁棒性,并呈现出相同的动力学相和相变顺序。作者甚至在其他类型的群落动力学模型(例如基于pH的种间相互作用模型)得到了定性上相同的相图。这些结果证明群落动力学和生物多样性的相图的普适性。

b15d4cbb5142ea32b26d90dcd4ab999e.webp

图1. 理论预测物种数量和种间相互作用强度塑造了群落的相图。

随着物种数量和种间相互作用强度增加,群落在三个涌现的动力学相之间发生相变,从所有物种稳定共存相,转变到部分物种稳定共存相,最终转变到物种数量随时间持续震荡相。

微生物群落从稳态转变到震荡的动力学行为

为了在实验上验证理论预测的动力学震荡,作者用从土壤中分离的48种不同的细菌为实验,用不同的细菌组合形成不同的微生物群落。通过改变培养液中营养物质(葡萄糖和尿素)的浓度,作者发现细菌间的相互作用强度随着营养物浓度升高而显著增强。与理论预测完全一致的是,在实验中系统地增加微生物群落的物种数量和种间相互作用强度,都会导致群落内的物种组成随着时间持续震荡。这种种群持续震荡既体现在总生物量随时间的剧烈震荡,也表现在不同物种比例随着时间的剧烈震荡。微生物群落的总生物(Biomass OD)和不同物种比例(16S测序结果)展现出高度一致的结果,既同一个群落的这两个性质要么同时达到稳定态,要么同时震荡。


fe14c1d605f5a12c034c8cd1dbf7b551.webp

图2. 微生物群落实验证明了理论的预测: 在物种数量和种间相互作用强度增加时,越来越多的微生物群落展现出随着时间的持续震荡。

实验微生物群落动力学和生物多样性的相图

作者通过分析实验中不同物种数量和相互作用强度下微生物群落的生物多样性和稳定性,在实验上验证了生态系统中涌现的相图和相变,结果与理论高度一致。具体而言,实验生态系统在物种数量少和种间相互作用弱的参数空间表现出所有物种稳定共存的行为,不断增加物种数量和种间相互作用时会首先发生第一次二阶相变,失去某些物种(物种灭绝)并转变到部分物种稳定共存,紧接着发生第二次相变,群落失去稳定性并持续震荡。总结而言,在生态系统的复杂度不断增加时,群落总会先失去物种多样性,再开始失去动力学稳定性。值得注意的是,生态系统的物种存活率(存活物种数量比总物种数量)在Phase II(部分物种稳定共存相)快速下降,但在phase III(震荡相)不再明显下降并达到相对稳定。本文的下一个章节将会解释动力学震荡如何阻碍物种多样性的快速流失。

0a4dd446b70657617ae9e9fca22934e7.webp

图3. 实验微生物群落的相图: 在物种数量和种间相互作用强度为坐标的参数空间下,微生物群落展现出三个不同的动力学相。在逐渐增加物种数量和种间相互作用强度时,群落会发生两次相变,群落将先损失一些物种多样性,再失去动力学稳定性并开始持续震荡。

种群震荡和物种多样性之间存在正反馈

理论预测了随着生态系统的物种存活率(存活物种数量比总物种数量)随着物种数量首先快速下降,然后进入平缓的区间,既存活率不再快速下降而趋于平稳。更有趣的是,计算结果显示在同样的条件下,震荡的群落总是比稳定的群落展现出更高的生物多样性。作者对实验数据进行分析,并发现与理论预测高度一致的结果,群落震荡和高物种多样性之间存在强烈的正反馈。动力学震荡对物种多样性的保护作用可以理解为有效生态位随着时间的震荡给更多物种的生存提供了可能。想象某一组物种与另一组物种存在强烈竞争抑制,并且不能共存,这时候如果两组物种随着时间保持有一定相位差的震荡就可以让双方各自在不同的时间区间生长,并在时间平均的意义下达到“共存”。

7e32ba89d392b4409398d9f56a54d218.webp

图4. 理论和实验结果一致显示震荡的群落比稳定的群落展现出更高的生物多样性。

- 结论与展望 -

我们的工作提出一个有效的框架,将理论生态学最著名的两个成果整合到了一起:一方面,May提出生态网络复杂性的增加必然导致其失去稳定性;另一方面Chesson证明生态系统随时间的震荡能维持物种多样性。生态学领域对于生物多样性和群落稳定性的关系一直存在争议,这个争议的主要原因是自然生态系统展现的复杂动力学既可能是环境的随机震荡造成的,也可能是生态网络的本征属性(复杂种间相互作用网络)造成的。我们的实验系统有效控制了环境噪音,证明了理论预测的结论:只需要两个粗粒化参数,即物种数量和种间相互作用强度就可以有效描述复杂生态系统的动力学行为。我们的预测和理论框架对于生物学细节是鲁棒的,使用资源-消费者模型或者pH模型都能得到相似的生态动力学相图。因此我们提出的生物多样性和群落动力学的相图在更多的生态系统中可能广泛适用。未来的工作应该尝试探究我们提出的动力学相图是否在各种时空尺度下普遍适用于各种生命体组成的复杂生态群落。


这项工作可能引起不同领域的科学家的兴趣。首先微生物群落的稳定性和多样性对于不同微生物组的功能和健康至关重要(例如肠道菌群和土壤菌群)。此外,我们使用的几类生态动力学模型被广泛应用在众多其他生态系统的研究中,所以这里提出的生态动力学相图可能对于其他生态群落也是普适的。最后,我们提出了一种受到统计物理启发的理论框架,可以从高维度的生态网络中提取出少量粗粒化的控制变量,这种方法可能被推广到其他复杂系统的研究当中。

参考文献

Jiliang Hu, Daniel R. Amor, Matthieu Barbier, Guy Bunin, Jeff Gore. Emergent phases of ecological diversity and

dynamics mapped in microcosms. Science, 2022 https://doi.org/10.1126/science.abm7841

- 作者简介 -

第一作者

5d223753c379491a80fe390851818f1c.webp

麻省理工学院

胡脊梁

博士后研究员

胡脊梁在清华大学钱学森班取得学士学位,在MIT物理系Jeff Gore教授指导下取得PhD学位,目前是MIT Physics of Living System独立博士后研究员。他的主要研究兴趣是多细胞生命体系中涌现的复杂行为,特别是发现有效预测复杂系统时空演化的粗粒化参数,从而降低定量描述多细胞复杂体系所需要的自由度。胡脊梁主导的多项研究成果已在Science,PNAS等杂志发表。

通讯作者

ddc5e7ce331ee35514ade95076c4d553.webp

麻省理工学院

Jeff Gore

教授

Jeff Gore是MIT物理系教授,担任MIT Physics of Living System Center的创始人和主任。Jeff Gore在MIT取得物理,数学,电子和金融的学士学位,然后加入UC Berkeley Carlos Bustamante 教授实验室完成单分子物理PhD论文。他在博士期间用光镊和磁镊系统研究了单分子DNA的拉伸,扭转和弯曲的高分子物理性质,之后在MIT博后期间用酵母体系完成历史上第一次对于生态博弈论的实验观测。Jeff Gore在2010年开始作为独立PI在MIT建立系统生态学团队并在2021年成为正教授,他致力于研究细胞单体之间的相互作用如何涌现出微生物群落的复杂生态和进化动力学行为。Gore Lab结合实验和理论在生态动力学分岔,多重稳态,共生关系,多物种组装,生物多样性和稳定性,以及复杂生态网络的相变等方面做出代表性成果,论文多发表在Science,Nature,Cell,PNAS,Nature Ecology & Evolution等期刊。

- 专家点评 -

b8f51ec752251e99e7caffa9e96ca071.webp

哈佛大学医学院

布莱根女子医院

刘洋彧

副教授,副研究员

刘洋彧,哈佛大学医学院副教授,布莱根女子医院副研究员。刘洋彧于2009年在伊利诺伊大学厄巴纳-香槟分校获得物理学博士学位,论文主题是无序磁体的相变研究。之后,他在东北大学复杂网络研究中心先后担任博士后和研究助理教授。他在东北大学研究的主要课题涉及结合控制论、网络科学和统计物理等工具解决与复杂系统控制相关的基本问题。他在复杂网络系统的可控性和可观察性方面的工作被列为Nature的封面故事、PNAS的封面故事,并被包括Nature、Science、Science News、Science Daily、Wired 等在内的广泛媒体报道。2013年他加入哈佛大学医学院和布莱根女子医院。他目前的研究工作侧重于从群落生态学、网络科学,控制论和机器学习的角度研究微生物组。

点评:

这篇文章将是生态理论与实验工作完美结合的典范。这篇文章的结论对人类微生物组稳定性研究将产生深远影响。我们知道,以前的许多研究都报导了人类的肠道,口腔和皮肤菌群的长期稳定性。我们很想知道该文章描述的动力学相图是否适用于人类微生物组。如果适用,那么人类微生物组是处于所有物种稳定共存相,还是部分物种稳定共存相?如果是后者,那么人类微生物组距离该文章描述的持续震荡相有多远?我想回答这些基本的生态学问题将会更好地帮助我们理解微生物组与人类健康的关系。

3f0ea978405df965b14a7d409e5b9469.webp

北京大学

李志远

助理教授

李志远,北京大学前沿交叉学科研究院定量生物学中心/联合生命科学中心助理教授,研究领域为定量生物学和生物物理,研究兴趣集中于以数理方法探索复杂生命系统的自组织规律,包括微生物群落从演化到互作中的定量规律、多细胞体系中的模式生成等;曾在Science,Cell, Nature Microbiology,PNAS等杂志上发表研究论文。

点评:

这是一篇定量微生物群落中“控制变量与序参量”的漂亮工作。自理论生态学于上世纪中叶兴盛以来,微生物群落的特殊性质一直吸引着研究者们的注意力——与“竞争排斥”理论相悖,微生物群落在复杂的相互作用中保持着高度的多样性,展现出令人惊叹的复杂性和动态特征。长久以来,研究者们尝试着使用各种理论和实验方法去理解微生物群落的构建规则;然而,囿于互作的复杂和实验手段的有限,关于微生物群落的组成、稳定性、和动态,尚未有太多普适性的法则被提出并证实。


这篇工作中,MIT物理系的胡脊梁和Jeff Gore团队以广义Lotka-Volterra数学模型结合群落实验,发现微生物群落在互作强度和物种池数量这两个控制变量的增加下,将依次经历稳定平衡-部分灭绝-持续震荡这三个动力学相。这一系列转变是较为普遍的,不受模型其它参数影响。值得注意的是,尽管进入持续震荡前,群落将经历部分的物种灭绝,但震荡本身却以动态的方式维持群落的多样性。这和理论生态学中“动态有助于多样性”的理论不谋而合。


难能可贵的是,这篇工作的实验部分以高度可控的方式调节了营养环境和人工合成菌群的物种池大小,并观测了群落的组成和动态。微生物生态这一领域往往是理论较多而实证偏少,这一系列群落实验,不仅为这个普适性的三相转变提供了强证,也为未来研究微生物群落的“相变”特征带来了宝贵的数据。


有趣的是,复杂网络研究的先驱Kaufman在1969对基因调控网络进行建模时,发现随基因间互作的增加,网络展现亦出稳态-振荡-混沌的三相转变,由此,Kauffman提出,“生命行走于混沌边缘”的理论。

殊途同归,至繁至简,复杂系统研究的魅力也在于此。

e9b13b6b296c75b29e3de0ca7a6e0130.webp

中科院深圳先进技术研究院

戴磊

研究员

戴磊,中国科学院深圳先进技术研究院研究员、博士生导师,合成微生物组研究中心主任。国家重点研发计划青年项目负责人,入选《麻省理工科技评论》中国区“35岁以下科技创新35人”。戴磊实验室在定量生物学、合成生物学与微生物组学的交叉领域进行原创性研究,致力于对宿主共生微生物组的结构和功能进行精准表征和调控,解决人体健康、农业生产等重大问题。研究成果以通讯作者或第一作者发表在Science、Nature、PNAS、ISME Journal、ACS Synthetic Biology等国际学术期刊。

点评:

生态系统的生物多样性与稳定性是生态学最核心的问题之一。为什么许多物种能够在自然界中长期共存?这一现象背后是否存在普适性的定量规律?在胡博士与Gore教授的研究中,通过结合生态动力学模型与合成微生物群落的可控实验,发现可以只用两个粗粒化参数(物种数量、平均种间相互作用强度)来准确描述复杂生态系统的动力学性质和相变。这是一项必定会写入教科书的工作。在未来的研究中,如果能把环境的时空异质性纳入理论框架中,将帮助我们更深入理解自然界复杂系统(比如肠道菌群)的生态规律。


往期精品(点击图片直达文字对应教程)

5511f5fb3364bf7754cdb88535f73e75.webp

2fcb815e516aa7606601dd2e009f4037.webp

5c6cbe12a1c1962049e4bdcc97c40bed.webp

deb8888058417843fb9c37f1e7e83e39.webp

7cc5990d51d7becc64ff6677ab42735a.webp

7e3b1a0b0d96b32fc8d7ed0049f67184.webp

707086b8bd63af03a8d57d7a7667a2a9.webp

8c547635b906a37feadaebdf89ff4b2a.webp

74bb551759f65a6d49b225ab42b95fca.webp

cb50a0e41afde1bea938f01f1dcee348.webp

fc1e95fe6db884554b9aedad95d17448.webp

f117f041e869eebf2b505eac8780ad45.webp

e405ec6b84a9ec85ed65eb03154977ff.webp

8809bd6645e57dfa530418853fb2b3ec.webp

ec0eda5ff5352080e7e4e0074d943db7.webp

726a089f869052e3f8bcdf948c4b6b30.webp

5e92285ea167108febdef0187543744b.webp

08f8c5d6311e1495ac14c746a6e82d88.webp

5d426cd00b7466c4590634279095b987.webp

7efbfc83c239161f934ee85d7a759ded.webp

11a194089ffd38b00dd8b6e3f002925c.webp

e2c4837f9be075fb56341c3ea2f205b6.webp

d271cea8f537fde7e7cdea948cdd84db.webp

78ef90fe9a54c46af7074c64c39ca170.webp

f34513a6418fd16a513fbfd5a5024128.webp

03f67df39d633e9d3783302bbe1321e0.webp

1ebf0f4363a6c05f198f02314d8fe5e2.webp

28d1be28ab4cfca2f0dd6bdca2328a01.webp

机器学习

后台回复“ 生信宝典福利第一波 ”或点击 阅读原文 获取教程合集

60a369697123261ed2d72b182e029159.webp



浏览 40
点赞
评论
收藏
分享

手机扫一扫分享

举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

举报