性能爆表:SpringBoot利用ThreadPoolTaskExecutor批量插入百万级数据实测!

Java专栏

共 6383字,需浏览 13分钟

 ·

2024-11-13 12:20

无需魔法,国内可直接使用官方ChatGPT-4(Plus)、ChatGPT-4o!

前言

开发目的:

提高百万级数据插入效率。

采取方案:

利用ThreadPoolTaskExecutor多线程批量插入。

采用技术:

  • springboot2.1.1
  • mybatisPlus3.0.6
  • swagger2.5.0
  • Lombok1.18.4
  • postgresql
  • ThreadPoolTaskExecutor

具体实现细节

application-dev.properties添加线程池配置信息

# 异步线程配置
# 配置核心线程数
async.executor.thread.core_pool_size = 30
# 配置最大线程数
async.executor.thread.max_pool_size = 30
# 配置队列大小
async.executor.thread.queue_capacity = 99988
# 配置线程池中的线程的名称前缀
async.executor.thread.name.prefix = async-importDB-

spring容器注入线程池bean对象

@Configuration
@EnableAsync
@Slf4j
public class ExecutorConfig {
    @Value("${async.executor.thread.core_pool_size}")
    private int corePoolSize;
    @Value("${async.executor.thread.max_pool_size}")
    private int maxPoolSize;
    @Value("${async.executor.thread.queue_capacity}")
    private int queueCapacity;
    @Value("${async.executor.thread.name.prefix}")
    private String namePrefix;
 
    @Bean(name = "asyncServiceExecutor")
    public Executor asyncServiceExecutor() {
        log.warn("start asyncServiceExecutor");
        //在这里修改
        ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor();
        //配置核心线程数
        executor.setCorePoolSize(corePoolSize);
        //配置最大线程数
        executor.setMaxPoolSize(maxPoolSize);
        //配置队列大小
        executor.setQueueCapacity(queueCapacity);
        //配置线程池中的线程的名称前缀
        executor.setThreadNamePrefix(namePrefix);
        // rejection-policy:当pool已经达到max size的时候,如何处理新任务
        // CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行
        executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
        //执行初始化
        executor.initialize();
        return executor;
    }
}

创建异步线程 业务类

@Service
@Slf4j
public class AsyncServiceImpl implements AsyncService {
@Override
    @Async("asyncServiceExecutor")
    public void executeAsync(List<LogOutputResult> logOutputResults, LogOutputResultMapper logOutputResultMapper, CountDownLatch countDownLatch) {
        try{
            log.warn("start executeAsync");
            //异步线程要做的事情
            logOutputResultMapper.addLogOutputResultBatch(logOutputResults);
            log.warn("end executeAsync");
        }finally {
            countDownLatch.countDown();// 很关键, 无论上面程序是否异常必须执行countDown,否则await无法释放
        }
    }
}

创建多线程批量插入具体业务方法

@Override
public int testMultiThread() {
    List<LogOutputResult> logOutputResults = getTestData();
    //测试每100条数据插入开一个线程
    List<List<LogOutputResult>> lists = ConvertHandler.splitList(logOutputResults, 100);
    CountDownLatch countDownLatch = new CountDownLatch(lists.size());
    for (List<LogOutputResult> listSub:lists) {
        asyncService.executeAsync(listSub, logOutputResultMapper,countDownLatch);
    }
    try {
        countDownLatch.await(); //保证之前的所有的线程都执行完成,才会走下面的;
        // 这样就可以在下面拿到所有线程执行完的集合结果
    } catch (Exception e) {
        log.error("阻塞异常:"+e.getMessage());
    }
    return logOutputResults.size();
}

模拟2000003 条数据进行测试

对了,最近我整理了上百本电子书/软件/视频以及面试题,还在持续更新中,全部免费,文档地址:

https://r86oxhhvu2.feishu.cn/wiki/ZMq0wjeFFiRRbvk9NeFcf7uknsJ

多线程 测试 2000003  耗时如下:耗时1.67分钟

本次开启30个线程,截图如下:

单线程测试2000003  耗时如下:耗时5.75分钟

检查多线程入库的数据,检查是否存在重复入库的问题:

根据id分组,查看是否有id重复的数据,通过sql语句检查,没有发现重复入库的问题

检查数据完整性:

通过sql语句查询,多线程录入数据完整

测试结果

不同线程数测试:

对了,最近我整理了上百本电子书/软件/视频以及面试题,还在持续更新中,全部免费,文档地址:

https://r86oxhhvu2.feishu.cn/wiki/ZMq0wjeFFiRRbvk9NeFcf7uknsJ

总结

通过以上测试案列,同样是导入2000003  条数据,多线程耗时1.67分钟,单线程耗时5.75分钟。通过对不同线程数的测试,发现不是线程数越多越好,具体多少合适,网上有一个不成文的算法:

CPU核心数量*2 +2 个线程。

附:测试电脑配置

来源:azdebug.blog.csdn.net/article/details/103697108
    

END

普通人也能直接使用ChatGPT-4/ChatGPT4o


一次性买了几百个ChatGPT官方账号,放在一个系统的池子里。共享给大家使用。不需要翻墙,就可以体验到官方正版账号。而且突破官方提问次数的限制。正版保证!支持GPTs、语音、联网、上传文件等功能

更多介绍点这里,无需魔法使用官方ChatGPT-4(Plus)、ChatGPT-4o!

每月只需72元! 


扫码可以加我微信购买,备注:GPT

每天只要一瓶可乐钱



浏览 384
1点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
1点赞
评论
收藏
分享

手机扫一扫分享

分享
举报