性能爆表:SpringBoot利用ThreadPoolTaskExecutor批量插入百万级数据实测!

Java架构师社区

共 7363字,需浏览 15分钟

 ·

2024-04-19 08:05

关注我们,设为星标,每天7:40不见不散,架构路上与您共享

回复架构师获取资源


大家好,我是你们的朋友架构君,一个会写代码吟诗的架构师。


来源:azdebug.blog.csdn.net/

article/details/103697108
  • 前言
  • 具体实现细节
  • 测试结果
  • 总结


前言

  • 开发目的: 提高百万级数据插入效率。
  • 采取方案: 利用ThreadPoolTaskExecutor多线程批量插入。
  • 采用技术: springboot2.1.1+mybatisPlus3.0.6+swagger2.5.0+Lombok1.18.4+postgresql+ThreadPoolTaskExecutor等。

具体实现细节

application-dev.properties添加线程池配置信息


> 基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
>
> * 项目地址:<https://github.com/YunaiV/yudao-cloud>
> * 视频教程:<https://doc.iocoder.cn/video/>

# 异步线程配置
# 配置核心线程数
async.executor.thread.core_pool_size = 30
# 配置最大线程数
async.executor.thread.max_pool_size = 30
# 配置队列大小
async.executor.thread.queue_capacity = 99988
# 配置线程池中的线程的名称前缀
async.executor.thread.name.prefix = async-importDB-

spring容器注入线程池bean对象

@Configuration
 
@EnableAsync
 
@Slf4j
 
public class ExecutorConfig {
    @Value("${async.executor.thread.core_pool_size}")
    private int corePoolSize;
    @Value("${async.executor.thread.max_pool_size}")
    private int maxPoolSize;
    @Value("${async.executor.thread.queue_capacity}")
    private int queueCapacity;
    @Value("${async.executor.thread.name.prefix}")
    private String namePrefix;
 
    @Bean(name = "asyncServiceExecutor")
    public Executor asyncServiceExecutor() {
        log.warn("start asyncServiceExecutor");
        //在这里修改
        ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor();
        //配置核心线程数
        executor.setCorePoolSize(corePoolSize);
        //配置最大线程数
        executor.setMaxPoolSize(maxPoolSize);
        //配置队列大小
        executor.setQueueCapacity(queueCapacity);
        //配置线程池中的线程的名称前缀
        executor.setThreadNamePrefix(namePrefix);
        // rejection-policy:当pool已经达到max size的时候,如何处理新任务
        // CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行
        executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
        //执行初始化
        executor.initialize();
        return executor;
    }
}

创建异步线程 业务类

@Service
@Slf4j
public class AsyncServiceImpl implements AsyncService {
@Override
    @Async("asyncServiceExecutor")
    public void executeAsync(List<LogOutputResult> logOutputResults, LogOutputResultMapper logOutputResultMapper, CountDownLatch countDownLatch) {
        try{
            log.warn("start executeAsync");
            //异步线程要做的事情
            logOutputResultMapper.addLogOutputResultBatch(logOutputResults);
            log.warn("end executeAsync");
        }finally {
            countDownLatch.countDown();// 很关键, 无论上面程序是否异常必须执行countDown,否则await无法释放
        }
    }
}

创建多线程批量插入具体业务方法

@Override
    public int testMultiThread() {
        List<LogOutputResult> logOutputResults = getTestData();
        //测试每100条数据插入开一个线程
        List<List<LogOutputResult>> lists = ConvertHandler.splitList(logOutputResults, 100);
        CountDownLatch countDownLatch = new CountDownLatch(lists.size());
        for (List<LogOutputResult> listSub:lists) {
            asyncService.executeAsync(listSub, logOutputResultMapper,countDownLatch);
        }
        try {
            countDownLatch.await(); //保证之前的所有的线程都执行完成,才会走下面的;
            // 这样就可以在下面拿到所有线程执行完的集合结果
        } catch (Exception e) {
            log.error("阻塞异常:"+e.getMessage());
        }
        return logOutputResults.size();
    }

模拟2000003 条数据进行测试

多线程 测试 2000003  耗时如下:耗时1.67分钟

本次开启30个线程,截图如下:

单线程测试2000003  耗时如下:耗时5.75分钟

检查多线程入库的数据,检查是否存在重复入库的问题:

根据id分组,查看是否有id重复的数据,通过sql语句检查,没有发现重复入库的问题

检查数据完整性:通过sql语句查询,多线程录入数据完整

测试结果

不同线程数测试:

总结

通过以上测试案列,同样是导入2000003  条数据,多线程耗时1.67分钟,单线程耗时5.75分钟。通过对不同线程数的测试,发现不是线程数越多越好,具体多少合适,网上有一个不成文的算法:

CPU核心数量*2 +2 个线程。

附:测试电脑配置


到此文章就结束了。Java架构师必看一个集公众号、小程序、网站(3合1的文章平台,给您架构路上一臂之力)。如果今天的文章对你在进阶架构师的路上有新的启发和进步,欢迎转发给更多人。欢迎加入架构师社区技术交流群,众多大咖带你进阶架构师,在后台回复“加群”即可入群。



这些年小编给你分享过的干货


1.idea2023.3.4永久激活码(亲测可用)

2.优质ERP系统带进销存财务生产功能(附源码)

3.优质SpringBoot带工作流管理项目(附源码)

4.最好用的OA系统,拿来即用(附源码)

5.SBoot+Vue外卖系统前后端都有(附源码

6.SBoot+Vue可视化大屏拖拽项目(附源码)


转发在看就是最大的支持❤️

浏览 97
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报