性能爆表:SpringBoot利用ThreadPoolTaskExecutor批量插入百万级数...
阅读本文大概需要 2.8 分钟。
来自:azdebug.blog.csdn.net/article/details/103697108
前言
开发目的: 提高百万级数据插入效率。采取方案: 利用ThreadPoolTaskExecutor
多线程批量插入。采用技术:
- springboot2.1.1
- mybatisPlus3.0.6
- swagger2.5.0
- Lombok1.18.4
- postgresql
- ThreadPoolTaskExecutor
具体实现细节
application-dev.properties
添加线程池配置信息# 异步线程配置
# 配置核心线程数
async.executor.thread.core_pool_size = 30
# 配置最大线程数
async.executor.thread.max_pool_size = 30
# 配置队列大小
async.executor.thread.queue_capacity = 99988
# 配置线程池中的线程的名称前缀
async.executor.thread.name.prefix = async-importDB-
@Configuration
@EnableAsync
@Slf4j
public class ExecutorConfig {
@Value("${async.executor.thread.core_pool_size}")
private int corePoolSize;
@Value("${async.executor.thread.max_pool_size}")
private int maxPoolSize;
@Value("${async.executor.thread.queue_capacity}")
private int queueCapacity;
@Value("${async.executor.thread.name.prefix}")
private String namePrefix;
@Bean(name = "asyncServiceExecutor")
public Executor asyncServiceExecutor() {
log.warn("start asyncServiceExecutor");
//在这里修改
ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor();
//配置核心线程数
executor.setCorePoolSize(corePoolSize);
//配置最大线程数
executor.setMaxPoolSize(maxPoolSize);
//配置队列大小
executor.setQueueCapacity(queueCapacity);
//配置线程池中的线程的名称前缀
executor.setThreadNamePrefix(namePrefix);
// rejection-policy:当pool已经达到max size的时候,如何处理新任务
// CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
//执行初始化
executor.initialize();
return executor;
}
}
@Service
@Slf4j
public class AsyncServiceImpl implements AsyncService {
@Override
@Async("asyncServiceExecutor")
public void executeAsync(List<LogOutputResult> logOutputResults, LogOutputResultMapper logOutputResultMapper, CountDownLatch countDownLatch) {
try{
log.warn("start executeAsync");
//异步线程要做的事情
logOutputResultMapper.addLogOutputResultBatch(logOutputResults);
log.warn("end executeAsync");
}finally {
countDownLatch.countDown();// 很关键, 无论上面程序是否异常必须执行countDown,否则await无法释放
}
}
}
@Override
public int testMultiThread() {
List<LogOutputResult> logOutputResults = getTestData();
//测试每100条数据插入开一个线程
List<List<LogOutputResult>> lists = ConvertHandler.splitList(logOutputResults, 100);
CountDownLatch countDownLatch = new CountDownLatch(lists.size());
for (List<LogOutputResult> listSub:lists) {
asyncService.executeAsync(listSub, logOutputResultMapper,countDownLatch);
}
try {
countDownLatch.await(); //保证之前的所有的线程都执行完成,才会走下面的;
// 这样就可以在下面拿到所有线程执行完的集合结果
} catch (Exception e) {
log.error("阻塞异常:"+e.getMessage());
}
return logOutputResults.size();
}
测试结果
不同线程数测试:图片图片总结
通过以上测试案列,同样是导入2000003 条数据,多线程耗时1.67分钟,单线程耗时5.75分钟。通过对不同线程数的测试,发现不是线程数越多越好,具体多少合适,网上有一个不成文的算法:CPU核心数量*2 +2 个线程。
附:测试电脑配置
图片<END>
推荐阅读:
互联网初中高级大厂面试题(9个G)
内容包含Java基础、JavaWeb、MySQL性能优化、JVM、锁、百万并发、消息队列、高性能缓存、反射、Spring全家桶原理、微服务、Zookeeper......等技术栈!
⬇戳阅读原文领取! 朕已阅