0.052秒打开100GB数据,这个Python开源库火爆了!

共 4686字,需浏览 10分钟

 ·

2021-03-26 10:48

许多组织都在尝试收集和利用尽可能多的数据,以改善其经营方式,增加收入和提升影响力。因此,数据科学家面对50GB甚至500GB大小的数据集情况变得越来越普遍。


不过,这类数据集使用起来不太容易。它们足够小,可以装入日常笔记本电脑的硬盘驱动器中,但同时大到无法装入RAM,导致它们已经很难打开和检查,更不用说探索或分析了。


处理此类数据集时,通常采用3种策略。


第一种是对数据进行二次采样,但缺点很明显:你可能因为忽视相关部分数据而错过关键洞察,甚至更糟的是,这会误解了数据所阐释的含义。


第二种策略是使用分布式计算。在某些情况下这是一种有效的方法,但它需要管理和维护集群的大量开销。


又或者,你可以租用一个强大的云实例,该实例具有处理相关数据所需的内存。例如,AWS提供具有TB级RAM的实例。在这种情况下,你仍然必须管理云数据存储区,每次实例启动时,都需要等待数据从存储空间传输到实例,同时,还要考虑将数据存储在云上的合规性问题,以及在远程计算机上工作带来的不便。更不别说成本,尽管一开始成本很低,但后续往往会增加。


Vaex是解决这个问题的新方法。它是一种几乎可以对任意大小的数据进行数据科学研究的更快、更安全、更方便的方法,只要数据集可以安装在你的笔记本电脑,台式机或服务器硬盘上。


什么是Vaex?


Vaex 是一个开源的 DataFrame 库(类似于Pandas),对和你硬盘空间一样大小的表格数据集,它可以有效进行可视化、探索、分析甚至进行实践机器学习。

它可以在N维网格上计算每秒超过十亿(10^9)个对象/行的统计信息,例如均值、总和、计数、标准差等 。使用直方图、密度图和三维体绘制完成可视化,从而可以交互式探索大数据。Vaex使用内存映射、零内存复制策略获得最佳性能(不浪费内存)。


为实现这些功能,Vaex 采用内存映射、高效的核外算法和延迟计算等概念。所有这些都封装为类 Pandas 的 API,因此,任何人都能快速上手。


十亿级计程车的数据分析


为了说明这一概念,让我们对一个数据集进行简单的探索性数据分析,该数据集并不适合典型笔记本电脑的RAM。


本文中将使用纽约市(NYC)出租车数据集,其中包含标志性的黄色出租车在2009年至2015年之间进行的超过10亿次出行的信息。数据可以从网站(*www1.nyc.gov/site/tlc/ab… *)下载,并且为CSV格式。完整的分析可以在此Jupyter笔记本中单独查看(*nbviewer.jupyter.org/github/vaex… *)。


为什么要选择vaex


  • 性能:处理海量表格数据,每秒处理超过十亿行

  • 虚拟列:动态计算,不浪费内存

  • 高效的内存在执行过滤/选择/子集时没有内存副本。

  • 可视化:直接支持,单线通常就足够了。

  • 用户友好的API:只需处理一个数据集对象,制表符补全和docstring可以帮助你:ds.mean,类似于Pandas。

  • 精益:分成多个包

  • Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中提供交互式可视化和选择。


打开100GB数据集只需0.052秒


第一步是将数据转换为内存可映射文件格式,例如Apache Arrow,Apache Parquet或HDF5。在此处也可以找到如何将CSV数据转换为HDF5的示例。数据变为内存可映射格式后,即使在磁盘上的大小超过100GB,也可以使用Vaex即时打开(只需0.052秒!):


为什么这么快?当使用Vaex打开内存映射文件时,实际上没有进行任何数据读取。Vaex仅读取文件的元数据,例如磁盘上数据的位置,数据结构(行数、列数、列名和类型),文件说明等。那么,如果我们要检查数据或与数据交互怎么办?打开数据集会生成一个标准的DataFrame并对其进行快速检查:



注意,单元执行时间太短了。这是因为显示Vaex DataFrame或列仅需要从磁盘读取前后5行数据。这将我们引向另一个重点:Vaex只会在需要时遍历整个数据集,并且会尝试通过尽可能少的数据传递来做到这一点。


无论如何,让我们从极端异常值或错误数据输入值开始清除此数据集。一个很好的方法是使用describe方法对数据进行高级概述,其中显示了样本数、缺失值数和每一列的数据类型。如果列的数据类型为数字,则还将显示平均值、标准偏差以及最小值和最大值。所有这些统计信息都是通过对数据的一次传递来计算的。


使用describe方法获得 DataFrame 的高级概览,注意这个 DataFrame 包含 18 列数据,不过截图只展示了前 7 列。


该describe方法很好地体现了Vaex的功能和效率:所有这些统计数据都是在我的MacBook Pro(2018款15英寸,2.6GHz Intel Core i7,32GB RAM)上用不到3分钟的时间计算出来的。其他库或方法都需要分布式计算或拥有超过100GB的云实例来执行相同的计算。而使用Vaex,你所需要的只是数据,以及只有几GB RAM的笔记本电脑。


查看describe的输出,很容易注意到数据包含一些严重的异常值。


首先开始检查上车地点。消除异常值的最简单方法是简单地绘制上下车地点的位置,并直观地定义我们要集中分析的NYC区域。由于我们正在使用如此大的数据集,因此直方图是最有效的可视化效果。使用Vaex创建和显示直方图和热力图的速度很快,而且图表可以交互!

一旦我们通过交互决定要关注的NYC区域,就可以简单地创建一个筛选后的DataFrame: 

关于上面的代码,最酷的事情是它需要执行的内存量可以忽略不计!在筛选Vaex DataFrame时不会复制数据,而是仅创建对原始对象的引用,在该引用上应用二进制掩码。用掩码选择要显示的行,并将其用于将来的计算。这将为我们节省100GB的RAM,而像今天许多标准数据科学工具却要复制数据。


现在,检查一下该passenger_count列。单次出租车行程记录的最大乘客数为255,这似乎有些夸张。计算每次行程的乘客人数,使用以下value_counts方法很容易做到这一点:


在 10 亿行数据上使用 value_counts 方法只需要 20 秒


从上图可以看出,载客超过6人的行程可能是罕见的异常值,或者仅仅是错误的数据输入,还有大量的0位乘客的行程。由于目前我们尚不了解这些行程是否合法,因此我们也将其过滤掉。  

让我们对行程距离进行类似的练习。由于这是一个连续变量,因此我们可以绘制行程距离的分布图。让我们绘制一个更合理范围的直方图。


纽约出租车数据行程距离直方图


从上图可以看出,出行次数随着距离的增加而减少。在距离约100英里处,分布有明显下降。目前,我们将以此为起点,根据行程距离消除极端离群值:

出行距离一列中存在极端异常值,这也是研究出行时间和出租车平均速度的动机。这些功能在数据集中尚不可用,但计算起来很简单:

上面的代码块无需内存,无需花费时间即可执行!这是因为代码只会创建虚拟列。这些列仅包含数学表达式,并且仅在需要时才进行评估。此外,虚拟列的行为与任何其他常规列都相同。注意,其他标准库将需要10 GB的RAM才能进行相同的操作。

好了,让我们来绘制行程耗费时间的分布:


纽约超过 10 亿次出租车行程耗费时间的直方图


从上面的图中可以看出,尽管有一些行程可能需要花费4至5个小时,但95%的出租车花费不到30分钟即可到达目的地。你能想象在纽约市被困出租车中超过3个小时吗?无论如何,我们要保持开放的态度,并考虑所有花费时间少于3小时的行程:

现在,让我们研究出租车的平均速度,同时选择一个合理的数据范围:


出租车平均速度分布


根据分布趋平的位置,我们可以推断出在每小时1到60英里之间合理的平均滑行速度,因此可以更新筛选后的DataFrame:

将重点转移到出租车费用上。从describe方法的输出中,我们可以看到在fare_amount,total_amount和tip_amount列中有一些疯狂的异常值。对于初学者,任何这些列中的任何值都不应为负。同时数字表明,一些幸运的司机仅凭开一次出租车便几乎成为了百万富翁。让我们看一下在相对合理的范围内这些数量的分布:


纽约超过 10 亿次出租车行程的车费、总额和小费的分布。在笔记本上绘制这些图表只用了 31 秒!


我们看到上述所有三个分布都有相当长的尾部。尾部的某些值可能是合法的,而其他值可能是错误的数据输入。无论如何,让我们先保守下,只考虑fare_amount,total_amount和tip_amount少于200的行程。我们还要求fare_amount,total_amount值大于200的行程。我们还要求fareamount,totalamount值大于0。

最后,在初步清理完所有数据之后,让我们看看有多少出租车数据需要进行分析:


还有超过11亿次旅行!大量的数据可以使你深入了解出租车行程背后的信息。


后记


此外,作者还从出租车司机最大化利润等角度利用Vaex进行分析数据。总之,Vaex会帮你缓解可能面临的一些数据挑战的问题。


有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它免费且开源。


如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的 Jupyter notebook 了解如何实现。


参考


Vaex 官方网站:vaex.io/ 

文档:*docs.vaex.io/ *

GitHub:*github.com/vaexio/vaex…*

PyPi:*pypi.python.org/pypi/vaex/ *


「❤️ 感谢大家」

如果你觉得这篇内容对你挺有有帮助的话:

  1. 点赞支持下吧,让更多的人也能看到这篇内容(收藏不点赞,都是耍流氓 -_-)
  2. 欢迎在留言区与我分享你的想法,也欢迎你在留言区记录你的思考过程。
  3. 觉得不错的话,也可以阅读近期梳理的文章(感谢鼓励与支持🌹🌹🌹):


老铁,三连支持一下,好吗?↓↓↓




欢迎大家加入到知识星球这个大家庭,这里一定有与你志同道合的小伙伴,在这里大家可以一起交流,一起学习,一同吹逼,一同玩耍。。。


长按按钮  “识别二维码” 关注我
更多精彩内容等着你哦

点分享

点点赞

点在

浏览 46
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报