3个Pandas高频使用函数

Python客栈

共 3598字,需浏览 8分钟

 ·

2022-08-11 21:42


大家好,我是Peter~

本文主要是给大家介绍3个Pandas日常高频使用函数:apply + agg + transform。

模拟数据

模拟了一份简单的数据

In [1]:

import pandas as pd
import numpy as np

In [2]:

df = pd.DataFrame(
    {"name":["xiaoming","sunjun","jimmy","tom"],
    "sex":["male","female","female","male"],
    "chinese":[100,80,90,92],
    "math":[90,100,88,90]
    })

df

Out[2]:


namesexchinesemath
0xiaomingmale10090
1sunjunfemale80100
2jimmyfemale9088
3tommale9290

函数apply

一个非常灵活的函数,能够对整个DataFrame或者Series执行给定函数的操作。

函数可以是自定义的,也可以是python或者pandas内置的函数,还可以是匿名函数。

使用1:自带函数

改变字段类型:从int64变成float64

In [3]:

df.dtypes  # 改变前

Out[3]:

name       object
sex        object
chinese     int64
math        int64
dtype: object

In [4]:

df["chinese"] = df["chinese"].apply(float)

In [5]:

df.dtypes  # 改变后

Out[5]:

name        object
sex         object
chinese    float64
math         int64
dtype: object

使用2:自定义函数

In [6]:

def change_sex(x):  # male-0  female-1
    return 0 if x == "male" else 1

In [7]:

df["sex"] = df["sex"].apply(change_sex)

df  # 改变后

使用3:匿名函数lambda

In [8]:

# float--->int

df["chinese"] = df["chinese"].apply(lambda x: int(x))

df.dtypes  

Out[8]:

name       object
sex         int64
chinese     int64
math        int64
dtype: object

In [9]:

# 将name变成首字母大写

df["name"] = df["name"].apply(lambda x: x.title())

df
# 同时操作两列,记得axis=1

df["score"] = df.apply(lambda x: x["chinese"] + x["math"], axis=1)
df

函数agg

操作Series数据

In [11]:

# 1

df["chinese"].agg(["mean""sum"])

Out[11]:

mean     90.5
sum     362.0
Name: chinese, dtype: float64

操作DataFrame数据

In [12]:

# 2

df[["chinese","math"]].agg({"chinese":["sum"], "math":["mean"]})

Out[12]:


chinesemath
sum362.0NaN
meanNaN92.0

In [13]:

# 3

df[["chinese","math"]].agg({"chinese":["sum","mean"], "math":["mean"]})

Out[13]:


chinesemath
sum362.0NaN
mean90.592.0

groupby + agg的联合使用:

In [14]:

# 4

df.groupby("sex").agg(["mean","sum"])
# 5
df.groupby("sex").agg({"chinese":["mean"], "math":["sum","min","max"]})

还可以自定义新生成的字段名称:

df.groupby("sex").agg(chinese_mean=("chinese","mean"), math_min=("chinese","min"))

函数transform

现在的df是这样子:

假设有一个需求:统计性别男女 sex 的chinese 的平均分(新增一个字段放在最后面),如何实现?

方法1:使用groupby + merge

In [18]:

# 1、先groupby

df1 = df.groupby("sex")["chinese"].mean().reset_index()
df1.columns = ["sex""average"]
df1
# 2、merge

# 结果
df = pd.merge(df, df1, on="sex")
df

方法2:groupby + map

In [20]:

dic = df.groupby("sex")["chinese"].mean().to_dict()
dic

Out[20]:

{0: 96.0, 1: 85.0}

In [21]:

df["average_map"] = df["sex"].map(dic)
df

方法3:使用transform

使用transform可以一步到位

df["average_tran"] = df.groupby("sex")["chinese"].transform("mean")
df


往期推荐
1、程序员如何优雅地解决线上问题?
2、你这背景太假了,用AI自动合成,假吗?
3、基于NumPy实现随机梯度下降算法
4、【干货原创】一个好用到爆的数据分析利器
5、使用 pandas 对数据进行移动计算

点击关注公众号,阅读更多精彩内容
浏览 22
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报