【机器学习基础】机器学习中类别变量的编码方法总结
机器学习初学者
共 3841字,需浏览 8分钟
·
2020-09-29 04:24
Author:louwill
Machine Learning Lab
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(['undergraduate', 'master', 'PhD', 'Postdoc'])
le.transform(['undergraduate', 'master', 'PhD', 'Postdoc'])
array([3, 2, 0, 1], dtype=int64)
import pandas as pd
df = pd.DataFrame({'f1':['A','B','C'],
'f2':['Male','Female','Male']})
df = pd.get_dummies(df, columns=['f1', 'f2'])
df
from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder(handle_unknown='ignore')
X = [['Male', 1], ['Female', 3], ['Female', 2]]
enc.fit(X)
enc.transform([['Female', 1], ['Male', 4]]).toarray()
array([[1., 0., 1., 0., 0.],
[0., 1., 0., 0., 0.]])
### 该代码来自知乎专栏:
### https://zhuanlan.zhihu.com/p/40231966
from sklearn.model_selection import KFold
n_folds = 20
n_inner_folds = 10
likelihood_encoded = pd.Series()
likelihood_coding_map = {}
# global prior mean
oof_default_mean = train[target].mean()
kf = KFold(n_splits=n_folds, shuffle=True)
oof_mean_cv = pd.DataFrame()
split = 0
for infold, oof in kf.split(train[feature]):
print ('==============level 1 encoding..., fold %s ============' % split)
inner_kf = KFold(n_splits=n_inner_folds, shuffle=True)
inner_oof_default_mean = train.iloc[infold][target].mean()
inner_split = 0
inner_oof_mean_cv = pd.DataFrame()
likelihood_encoded_cv = pd.Series()
for inner_infold, inner_oof in inner_kf.split(train.iloc[infold]):
print ('==============level 2 encoding..., inner fold %s ============' % inner_split)
# inner out of fold mean
oof_mean = train.iloc[inner_infold].groupby(by=feature)[target].mean()
# assign oof_mean to the infold
likelihood_encoded_cv = likelihood_encoded_cv.append(train.iloc[infold].apply(
lambda x : oof_mean[x[feature]]
if x[feature] in oof_mean.index
else inner_oof_default_mean, axis = 1))
inner_oof_mean_cv = inner_oof_mean_cv.join(pd.DataFrame(oof_mean), rsuffix=inner_split, how='outer')
inplace=True)
inner_split += 1
oof_mean_cv = oof_mean_cv.join(pd.DataFrame(inner_oof_mean_cv), rsuffix=split, how='outer')
oof_default_mean, inplace=True) =
split += 1
print ('============final mapping...===========')
likelihood_encoded = likelihood_encoded.append(train.iloc[oof].apply(
lambda x: np.mean(inner_oof_mean_cv.loc[x[feature]].values)
if x[feature] in inner_oof_mean_cv.index
1)) =
lgb_train = lgb.Dataset(train2[features], train2['total_cost'],
categorical_feature=['sex'])
Label Encoding
类别特征内部有序
One-hot Encoding
类别特征内部无序
类别数值<5
Target Encoding
类别特征内部无序
类别数值>5
模型自动编码
LightGBM
CatBoost
往期精彩回顾
获取一折本站知识星球优惠券,复制链接直接打开:
https://t.zsxq.com/662nyZF
本站qq群704220115。
加入微信群请扫码进群(如果是博士或者准备读博士请说明):
评论