如何快速定位 Python 运行最慢的代码?

共 10268字,需浏览 21分钟

 ·

2021-09-14 22:49

△点击上方“Python猫”关注 ,回复“1”领取电子书

天下武功,唯快不破。

编程也不例外,你的代码跑的快,你能快速找出代码慢的原因,你的码功就高。

今天分享一个超级实用的 Python 性能分析工具 pyinstrument ,可以快速找到代码运行最慢的部分,帮助提高代码的性能。支持 Python 3.7+ 且能够分析异步代码,仅需一条命令即可显示具体代码的耗时。经常写 Python 的小伙伴一定要用一下。

安装

pip install pyinstrument

简单的使用

在程序的开始,启动 pyinstrument 的 Profiler,结束时关闭 Profiler 并打印分析结果如下:

from pyinstrument import Profiler

profiler = Profiler()
profiler.start()

# 这里是你要分析的代码

profiler.stop()

profiler.print()

比如这段代码 123.py,我们可以清楚的看到是列表推导式比较慢:

from pyinstrument import Profiler

profiler = Profiler()
profiler.start()

# 这里是你要分析的代码
a = [i for i in range(100000)]
b = (i for i in range(100000))

profiler.stop()
profiler.print()

上述分析需要修改源代码,如果你使用命令行工具,就不需要修改源代码,只需要执行 pyinstrument xxxx.py 即可:

比如有这样一段排序的程序 c_sort.py:

import sys
import time

import numpy as np

arr = np.random.randint(01010)

def slow_key(el):
    time.sleep(0.01)
    return el 

arr = list(arr)

for i in range(10):
    arr.sort(key=slow_key)

print(arr)

这段代码里面故意放了一句 time.sleep(0.01) 来延迟性能,看看 pyinstrument 能否识别,命令行执行 pyinstrument c_sort.py:

从结果来看,程序运行了 1.313 秒,而 sleep 就运行了 1.219 秒,很明显是瓶颈,现在我们把它删除,再看看结果:

删除之后,性能最慢的就是 numpy 模块的初始化代码 __init__.py了,不过这些代码不是自己写的,而且并不是特别慢,就不需要去关心了。

分析 Flask 代码

Web 应用也可以使用这个来找出性能瓶颈,比如 flask,只需要在请求之前记录时间,在请求之后统计时间,只需要在 flask 的请求拦截器里面这样写:

from flask import Flask, g, make_response, request
app = Flask(__name__)

@app.before_request
def before_request():
    if "profile" in request.args:
        g.profiler = Profiler()
        g.profiler.start()


@app.after_request
def after_request(response):
    if not hasattr(g, "profiler"):
        return response
    g.profiler.stop()
    output_html = g.profiler.output_html()
    return make_response(output_html)

假如有这样一个 API:

@app.route("/dosomething")
def do_something():
    import requests
    requests.get("http://google.com")
    return "Google says hello!"

为了测试这个 API 的瓶颈,我们可以在 url 上加一个参数 profile 就可以:http://127.0.0.1:5000/dosomething?profile,哪一行代码执行比较慢,结果清晰可见:

分析 Django 代码

分析 Django 代码也非常简单,只需要在 Django 的配置文件的 MIDDLEWARE 中添加

    "pyinstrument.middleware.ProfilerMiddleware",

然后就可以在 url 上加一个参数 profile 就可以:

如果你不希望所有人都能看到,只希望管理员可以看到,settings.py 可以添加这样的代码:

def custom_show_pyinstrument(request):
    return request.user.is_superuser

PYINSTRUMENT_SHOW_CALLBACK = "%s.custom_show_pyinstrument" % __name__

如果不想通过 url 后面加参数的方式查看性能分析,可以在 settings.py 文件中添加:

PYINSTRUMENT_PROFILE_DIR = 'profiles'

这样,每次访问一次 Django 接口,就会将分析结果以 html 文件形式保存在 项目目录下的 profiles 文件夹中。

分析异步代码

简单的异步代码分析:

async_example_simple.py:

import asyncio

from pyinstrument import Profiler


async def main():
    p = Profiler()
    with p:
        print("Hello ...")
        await asyncio.sleep(1)
        print("... World!")
    p.print()


asyncio.run(main())

复杂一些的异步代码分析:

import asyncio
import time

import pyinstrument


def do_nothing():
    pass


def busy_wait(duration):
    end_time = time.time() + duration

    while time.time() < end_time:
        do_nothing()


async def say(what, when, profile=False):
    if profile:
        p = pyinstrument.Profiler()
        p.start()

    busy_wait(0.1)
    sleep_start = time.time()
    await asyncio.sleep(when)
    print(f"slept for {time.time() - sleep_start:.3f} seconds")
    busy_wait(0.1)

    print(what)
    if profile:
        p.stop()
        p.print(show_all=True)


loop = asyncio.get_event_loop()

loop.create_task(say("first hello"2, profile=True))
loop.create_task(say("second hello"1, profile=True))
loop.create_task(say("third hello"3, profile=True))

loop.run_forever()
loop.close()

工作原理

Pyinstrument 每 1ms 中断一次程序,并在该点记录整个堆栈。它使用 C 扩展名和 PyEval_SetProfile 来做到这一点,但只每 1 毫秒读取一次读数。你可能觉得报告的样本数量有点少,但别担心,它不会降低准确性。默认间隔 1ms 是记录堆栈帧的下限,但如果在单个函数调用中花费了很长时间,则会在该调用结束时进行记录。如此有效地将这些样本“打包”并在最后记录。

Pyinstrument 是一个统计分析器,并不跟踪,它不会跟踪您的程序进行的每个函数调用。相反,它每 1 毫秒记录一次调用堆栈。与其他分析器相比,统计分析器的开销比跟踪分析器低得多。

比如说,我想弄清楚为什么 Django 中的 Web 请求很慢。如果我使用 cProfile,我可能会得到这个:

151940 function calls (147672 primitive calls) in 1.696 seconds

   Ordered by: cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    1.696    1.696 profile:0(<code object <module> at 0x1053d6a30, file "./manage.py", line 2>)
        1    0.001    0.001    1.693    1.693 manage.py:2(<module>)
        1    0.000    0.000    1.586    1.586 __init__.py:394(execute_from_command_line)
        1    0.000    0.000    1.586    1.586 __init__.py:350(execute)
        1    0.000    0.000    1.142    1.142 __init__.py:254(fetch_command)
       43    0.013    0.000    1.124    0.026 __init__.py:1(<module>)
      388    0.008    0.000    1.062    0.003 re.py:226(_compile)
      158    0.005    0.000    1.048    0.007 sre_compile.py:496(compile)
        1    0.001    0.001    1.042    1.042 __init__.py:78(get_commands)
      153    0.001    0.000    1.036    0.007 re.py:188(compile)
  106/102    0.001    0.000    1.030    0.010 __init__.py:52(__getattr__)
        1    0.000    0.000    1.029    1.029 __init__.py:31(_setup)
        1    0.000    0.000    1.021    1.021 __init__.py:57(_configure_logging)
        2    0.002    0.001    1.011    0.505 log.py:1(<module>)

看完是不是还是一脸懵逼,通常很难理解您自己的代码如何与这些跟踪相关联。Pyinstrument 记录整个堆栈,因此跟踪昂贵的调用要容易得多。它还默认隐藏库框架,让您专注于影响性能的应用程序/模块:

  _     ._   __/__   _ _  _  _ _/_   Recorded: 14:53:35  Samples:  131
 /_//_/// /_\ / //_// / //_'/ //    Duration: 3.131     CPU time: 0.195
/   _/                    v3.0.0b3

Program: examples/django_example/manage.py runserver --nothreading --noreload

3.131 <module>  manage.py:2
└─ 3.118 execute_from_command_line  django/core/management/__init__.py:378
      [473 frames hidden]  django, socketserver, selectors, wsgi...
         2.836 select  selectors.py:365
         0.126 _get_response  django/core/handlers/base.py:96
         └─ 0.126 hello_world  django_example/views.py:4

最后的话

本文分享了 pyinstrument 的用法,有了这个性能分析神器,以后优化代码可以节省很多时间了,这样的效率神器很值得分享,毕竟人生苦短,能多点时间干点有意思的不香么?

Python猫技术交流群开放啦!群里既有国内一二线大厂在职员工,也有国内外高校在读学生,既有十多年码龄的编程老鸟,也有中小学刚刚入门的新人,学习氛围良好!想入群的同学,请在公号内回复『交流群』,获取猫哥的微信(谢绝广告党,非诚勿扰!)~


还不过瘾?试试它们




Python 中最常用的 5 种线程锁你会用吗?

CPython 有 GIL 是因为当年设计的人偷懒吗?

Python 有可能删除 GIL 吗?

任务调度神器 airflow 之初体验

GitHub 太慢?9 种方案可提速!

酷炫!Python函数耗时异常自动化监控!


如果你觉得本文有帮助
请慷慨分享点赞,感谢啦
浏览 60
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报