【NLP】看不懂bert没关系,用起来so easy!
bert的大名如雷贯耳,无论在比赛,还是实际上的应用早已普及开来。想到十方第一次跑bert模型用的框架还是paddlepaddle,那时候用自己的训练集跑bert还是比较痛苦的,不仅要看很多配置文件,预处理代码,甚至报错了都不知道怎么回事,当时十方用的是bert双塔做文本向量的语义召回。如今tf都已经更新到了2.4了,tensorflow-hub的出现更是降低了使用预训练模型的门槛,接下来带大家看下,如何花十分钟时间快速构建bert双塔召回模型。
tensorflow hub

打开tensorflow官网,找到tensorflow-hub点进去,我们就能看到各种预训练好的模型了,找到一个预训练好的模型(如下图),下载下来,如介绍所说,这是个12层,768维,12头的模型。

在往下看,我们看到有配套的预处理工具:


同样下载下来,然后我们就可以构建bert双塔了。
Bert双塔

import osimport shutilimport pickleimport tensorflow as tfimport tensorflow_hub as hubimport tensorflow_text as textfrom official.nlp import optimizationfrom tensorflow.keras import *from tqdm import tqdmimport numpy as npimport pandas as pdimport jsonimport reimport random# 这里读你自己的文本数据集with open('./data/train_data.pickle', 'rb') as f:train_data = pickle.load(f)# 读数据用的generaterdef train_generator():np.random.shuffle(train_data)for i in range(len(train_data)):yield train_data[i][0], train_data[i][1]# 训练数据 datasetds_tr = tf.data.Dataset.from_generator(train_generator, output_types=(tf.string, tf.string))# bert 双塔 dim_size是维度 model_name是下载模型的路径def get_model(dim_size, model_name):# 下载的预处理工具路径preprocessor = hub.load('./bert_en_uncased_preprocess/3')# 左边塔的文本text_source = tf.keras.layers.Input(shape=(), dtype=tf.string)# 右边塔的文本text_target = tf.keras.layers.Input(shape=(), dtype=tf.string)tokenize = hub.KerasLayer(preprocessor.tokenize)tokenized_inputs_source = [tokenize(text_source)]tokenized_inputs_target = [tokenize(text_target)]seq_length = 512 # 这里指定你序列文本的最大长度bert_pack_inputs = hub.KerasLayer(preprocessor.bert_pack_inputs,arguments=dict(seq_length=seq_length))encoder_inputs_source = bert_pack_inputs(tokenized_inputs_source)encoder_inputs_target = bert_pack_inputs(tokenized_inputs_target)# 加载预训练参数bert_model = hub.KerasLayer(model_name)bert_encoder_source, bert_encoder_target = bert_model(encoder_inputs_source), bert_model(encoder_inputs_target)# 这里想尝试in-batch loss# 也可以直接对 bert_encoder_source['pooled_output'], bert_encoder_target['pooled_output'] 做点积操作matrix_logit = tf.linalg.matmul(bert_encoder_source['pooled_output'], bert_encoder_target['pooled_output'], transpose_a=False, transpose_b=True)matrix_logit = matrix_logit / tf.sqrt(dim_size)model = models.Model(inputs = [text_source, text_target], outputs = [bert_encoder_source['pooled_output'], bert_encoder_target['pooled_output'], matrix_logit])return modelbert_double_tower = get_model(128.0, './small_bert_bert_en_uncased_L-2_H-128_A-2_1/3')bert_double_tower.summary()
我们看到bert双塔模型已经构建完成:

然后定义loss,就可以训练啦!
optimizer = optimizers.Adam(learning_rate=5e-5)loss_func_softmax = tf.keras.losses.CategoricalCrossentropy(from_logits=True)train_loss = metrics.Mean(name='train_loss')train_acc = metrics.CategoricalAccuracy(name='train_accuracy')def train_step(model, features):with tf.GradientTape() as tape:p_source, p_target, pred = model(features)label = tf.eye(tf.shape(pred)[0])loss = loss_func_softmax(label, pred)gradients = tape.gradient(loss, model.trainable_variables)optimizer.apply_gradients(zip(gradients, model.trainable_variables))train_loss.update_state(loss)train_acc.update_state(label, pred)def train_model(model, bz, epochs):for epoch in tf.range(epochs):steps = 0for feature in ds_tr.prefetch(buffer_size = tf.data.experimental.AUTOTUNE).batch(bz):logs_s = 'At Epoch={},STEP={}'tf.print(tf.strings.format(logs_s,(epoch, steps)))train_step(model, feature)steps += 1train_loss.reset_states()train_acc.reset_states()
往期精彩回顾
本站qq群851320808,加入微信群请扫码:
评论
