性能SOTA,国防科技大学单张RGB-D图像预测物体对称性
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
本文转自|计算机视觉联盟
在这篇论文中,来自国防科技大学和普林斯顿大学的研究者提出了一种面向单张 RGB-D 图像的对称检测网络 SymmetryNet。实验结果表明,该检测网络显著优于其它已有方法,性能达到了 SOTA,尤其是在没有训练过的物体上优势明显。此外,SymmetryNet 能够准确地检测出多种不同物体的对称性,包括被遮挡的物体、包含多个对称面的物体等。
论文链接:https://arxiv.org/abs/2008.00485
数据和代码链接:https://github.com/GodZarathustra/SymmetryNet
end
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论