外行人都能看懂的WebFlux,错过了血亏

Java3y

共 3229字,需浏览 7分钟

 ·

2019-11-16 23:22

前言

只有光头才能变强。

文本已收录至我的GitHub仓库,欢迎Star:

https://github.com/ZhongFuCheng3y/3y

本文知识点架构:

e7d26d52624bc7c050e43b18df26d26f.webp知识点架构

如果有关注我公众号文章的同学就会发现,最近我不定时转发了一些比较好的WebFlux的文章,因为我最近在学。

我之前也说过,学习一项技术之前,先要了解为什么要学这项技术。其实这次学习WebFlux也没有多大的原生动力,主要是在我们组内会轮流做一次技术分享,而我又不知道分享什么比较好…

之前在初学大数据相关的知识,但是这一块的时间线会拉得比较长,感觉赶不及小组内分享(而组内的同学又大部分都懂大数据,就只有我一个菜鸡,泪目)。所以,想的是:“要不我学点新东西搞搞?”。于是就花了点时间学WebFlux啦~

这篇文章主要讲解什么是WebFlux,带领大家入个门,希望对大家有所帮助(至少看完这篇文章,知道WebFlux是干嘛用的)

一、什么是WebFlux?

我们从Spring的官网拉下一点点就可以看到介绍WebFlux的地方了

4fb1e693034501150e5f2b59afc6aa4b.webpWebFlux的简介

从官网的简介中我们能得出什么样的信息?

  • 我们程序员往往根据不同的应用场景选择不同的技术,有的场景适合用于同步阻塞的,有的场景适合用于异步非阻塞的。而Spring5提供了一整套响应式(非阻塞)的技术栈供我们使用(包括Web控制器、权限控制、数据访问层等等)。

  • 而左侧的图则是技术栈的对比啦;

  • 响应式一般用Netty或者Servlet 3.1的容器(因为支持异步非阻塞),而Servlet技术栈用的是Servlet容器

  • 在Web端,响应式用的是WebFlux,Servlet用的是SpringMVC

  • …..

总结起来,WebFlux只是响应式编程中的一部分(在Web控制端),所以一般我们用它与SpringMVC来对比。

二、如何理解响应式编程?

在上面提到了响应式编程(Reactive Programming),而WebFlux只是响应式编程的其中一个技术栈而已,所以我们先来探讨一下什么是响应式编程

从维基百科里边我们得到的定义:

reactive programming is a declarative programming paradigm concerned with data streams and the propagation of change

响应式编程(reactive programming)是一种基于数据流(data stream)和变化传递(propagation of change)的声明式(declarative)的编程范式

在维基百科上也举了个小例子:

97bde36afcbcf35eabc45604ef2bbd53.webp例子

意思大概如下:

  • 在命令式编程(我们的日常编程模式)下,式子a=b+c,这就意味着a的值是由bc计算出来的。如果b或者c后续有变化,不会影响a的值

  • 在响应式编程下,式子a:=b+c,这就意味着a的值是由bc计算出来的。但如果b或者c的值后续有变化,会影响a的值

我认为上面的例子已经可以帮助我们理解变化传递(propagation of change)

那数据流(data stream)和声明式(declarative)怎么理解呢?那可以提一提我们的Stream流了。之前写过Lambda表达式和Stream流的文章,大家可以先去看看:

Lambda的语法是这样的(Stream流的使用会涉及到很多Lambda表达式的东西,所以一般先学Lambda再学Stream流):

d51b5da4d080793fc4a27058bdbd0cd3.webp语法

Stream流的使用分为三个步骤(创建Stream流、执行中间操作、执行最终操作):

3949afa143eb8eac9dcbd073922c3bb5.webp三步走

执行中间操作实际上就是给我们提供了很多的API去操作Stream流中的数据(求和/去重/过滤)等等

aa6ac04ce7b2dfc123726a9ba0887115.webp中间操作 解释

说了这么多,怎么理解数据流和声明式呢?其实是这样的:

  • 本来数据是我们自行处理的,后来我们把要处理的数据抽象出来(变成了数据流),然后通过API去处理数据流中的数据(是声明式的)

比如下面的代码;将数组中的数据变成数据流,通过显式声明调用.sum()来处理数据流中的数据,得到最终的结果:

public static void main(String[] args) {
    int[] nums = { 123 };
    int sum2 = IntStream.of(nums).parallel().sum();
    System.out.println("结果为:" + sum2);
}

如图下所示:

ce6c9b1e04ff6ef36904d53962efa97d.webp数据流与声明式

2.1 响应式编程->异步非阻塞

上面讲了响应式编程是什么:

响应式编程(reactive programming)是一种基于数据流(data stream)和变化传递(propagation of change)的声明式(declarative)的编程范式

也讲解了数据流/变化传递/声明式是什么意思,但说到响应式编程就离不开异步非阻塞

从Spring官网介绍WebFlux的信息我们就可以发现asynchronous, nonblocking 这样的字样,因为响应式编程它是异步的,也可以理解成变化传递它是异步执行的。

如下图,合计的金额会受其他的金额影响(更新的过程是异步的):

edb3aa45315862fbcd7ba55d0e1e7dd7.webp合计的钱会因为其他的金额影响

我们的JDK8 Stream流是同步的,它就不适合用于响应式编程(但基础的用法是需要懂的,因为响应式流编程都是操作嘛)

而在JDK9 已经支持响应式流了,下面我们来看一下

三、JDK9 Reactive

响应式流的规范早已经被提出了:里面提到了:

Reactive Streams is an initiative to provide a standard for asynchronous stream processing with non-blocking back pressure   ----->http://www.reactive-streams.org/

翻译再加点信息:

响应式流(Reactive Streams)通过定义一组实体,接口和互操作方法,给出了实现异步非阻塞背压的标准。第三方遵循这个标准来实现具体的解决方案,常见的有Reactor,RxJava,Akka Streams,Ratpack等。

规范里头实际上就是定义了四个接口:

b9720b025eaa91e29ad528739826917c.webp规范的四个接口

Java 平台直到 JDK 9才提供了对于Reactive的完整支持,JDK9也定义了上述提到的四个接口,在java.util.concurrent包上

a639f899909664f37a7efe15447b389a.webpJava的响应式流接口

一个通用的流处理架构一般会是这样的(生产者产生数据,对数据进行中间处理,消费者拿到数据消费):

46fab641de499629f0cecb60893655b9.webp流式处理架构
  • 数据来源,一般称为生产者(Producer)

  • 数据的目的地,一般称为消费者(Consumer)

  • 在处理时,对数据执行某些操作一个或多个处理阶段。(Processor)

到这里我们再看回响应式流的接口,我们应该就能懂了:

  • Publisher(发布者)相当于生产者(Producer)

  • Subscriber(订阅者)相当于消费者(Consumer)

  • Processor就是在发布者与订阅者之间处理数据用的

在响应式流上提到了back pressure(背压)这么一个概念,其实非常好理解。在响应式流实现异步非阻塞是基于生产者和消费者模式的,而生产者消费者很容易出现的一个问题就是:生产者生产数据多了,就把消费者给压垮了

而背压说白了就是:消费者能告诉生产者自己需要多少量的数据。这里就是Subscription接口所做的事。

下面我们来看看JDK9接口的方法,或许就更加能理解上面所说的话了:

// 发布者(生产者)
public interface Publisher<T{
    public void subscribe(Subscribersuper T> s);
}
// 订阅者(消费者)
public interface Subscriber<T{
    public void onSubscribe(Subscription s);
    public void onNext(T t);
    public void onError(Throwable t);
    public void onComplete();
}
// 用于发布者与订阅者之间的通信(实现背压:订阅者能够告诉生产者需要多少数据)
public interface Subscription {
    public void request(long n);
    public void cancel();
}
// 用于处理发布者 发布消息后,对消息进行处理,再交由消费者消费
public interface Processor<T,Rextends Subscriber<T>, Publisher<R{
}

3.1 看个例子

代码中有大量的注释,我就不多BB了,建议直接复制跑一下看看:

class MyProcessor extends SubmissionPublisher<String>
        implements Processor<IntegerString
{

    private Subscription subscription;

    @Override
    public void onSubscribe(Subscription subscription) {
        // 保存订阅关系, 需要用它来给发布者响应
        this.subscription = subscription;

        // 请求一个数据
        this.subscription.request(1);
    }

    @Override
    public void onNext(Integer item) {
        // 接受到一个数据, 处理
        System.out.println("处理器接受到数据: " + item);

        // 过滤掉小于0的, 然后发布出去
        if (item > 0) {
            this.submit("转换后的数据:" + item);
        }

        // 处理完调用request再请求一个数据
        this.subscription.request(1);

        // 或者 已经达到了目标, 调用cancel告诉发布者不再接受数据了
        // this.subscription.cancel();
    }

    @Override
    public void onError(Throwable throwable) {
        // 出现了异常(例如处理数据的时候产生了异常)
        throwable.printStackTrace();

        // 我们可以告诉发布者, 后面不接受数据了
        this.subscription.cancel();
    }

    @Override
    public void onComplete() {
        // 全部数据处理完了(发布者关闭了)
        System.out.println("处理器处理完了!");
        // 关闭发布者
        this.close();
    }

}

public class FlowDemo2 {

    public static void main(String[] args) throws Exception {
        // 1. 定义发布者, 发布的数据类型是 Integer
        // 直接使用jdk自带的SubmissionPublisher
        SubmissionPublisher publiser = new SubmissionPublisher();

        // 2. 定义处理器, 对数据进行过滤, 并转换为String类型
        MyProcessor processor = new MyProcessor();

        // 3. 发布者 和 处理器 建立订阅关系
        publiser.subscribe(processor);

        // 4. 定义最终订阅者, 消费 String 类型数据
        Subscriber subscriber = new Subscriber() {

            private Subscription subscription;

            @Override
            public void onSubscribe(Subscription subscription) {
                // 保存订阅关系, 需要用它来给发布者响应
                this.subscription = subscription;

                // 请求一个数据
                this.subscription.request(1);
            }

            @Override
            public void onNext(String item) {
                // 接受到一个数据, 处理
                System.out.println("接受到数据: " + item);

                // 处理完调用request再请求一个数据
                this.subscription.request(1);

                // 或者 已经达到了目标, 调用cancel告诉发布者不再接受数据了
                // this.subscription.cancel();
            }

            @Override
            public void onError(Throwable throwable) {
                // 出现了异常(例如处理数据的时候产生了异常)
                throwable.printStackTrace();

                // 我们可以告诉发布者, 后面不接受数据了
                this.subscription.cancel();
            }

            @Override
            public void onComplete() {
                // 全部数据处理完了(发布者关闭了)
                System.out.println("处理完了!");
            }

        };

        // 5. 处理器 和 最终订阅者 建立订阅关系
        processor.subscribe(subscriber);

        // 6. 生产数据, 并发布
        publiser.submit(-111);
        publiser.submit(111);

        // 7. 结束后 关闭发布者
        // 正式环境 应该放 finally 或者使用 try-resouce 确保关闭
        publiser.close();

        // 主线程延迟停止, 否则数据没有消费就退出
        Thread.currentThread().join(1000);
    }

}

输出的结果如下:

2de7f8c2ef29d9d7fe7f86127147b3a9.webp输出的结果

流程实际上非常简单的:

b02d4f293a20332f118f4a3f32c094e6.webp流程

参考资料:

  • https://yanbin.blog/java-9-talk-reactive-stream/#more-8877

  • https://blog.csdn.net/wudaoshihun/article/details/83070086

  • http://www.spring4all.com/article/6826

  • https://www.cnblogs.com/IcanFixIt/p/7245377.html

Java 8 的 Stream 主要关注在流的过滤,映射,合并,而  Reactive Stream 更进一层,侧重的是流的产生与消费,即流在生产与消费者之间的协调

说白了就是:响应式流是异步非阻塞+流量控制的(可以告诉生产者自己需要多少的量/取消订阅关系)

展望响应式编程的场景应用:

比如一个日志监控系统,我们的前端页面将不再需要通过“命令式”的轮询的方式不断向服务器请求数据然后进行更新,而是在建立好通道之后,数据流从系统源源不断流向页面,从而展现实时的指标变化曲线;

再比如一个社交平台,朋友的动态、点赞和留言不是手动刷出来的,而是当后台数据变化的时候自动体现到界面上的。

四、入门WebFlux

扯了一大堆,终于回到WebFlux了。经过上面的基础,我们现在已经能够得出一些结论的了:

  • WebFlux是Spring推出响应式编程的一部分(web端)

  • 响应式编程是异步非阻塞的(是一种基于数据流(data stream)和变化传递(propagation of change)的声明式(declarative)的编程范式)

我们再回来看官网的图:

1a877bf5ecd5e690bafc204ef42fa85b.webpmvc or webflux

4.1 简单体验WebFlux

Spring官方为了让我们更加快速/平滑到WebFlux上,之前SpringMVC那套都是支持的。也就是说:我们可以像使用SpringMVC一样使用着WebFlux

b31615b4953c1b0bf877ae72217e4d2c.webp支持SpringMVC那套

WebFlux使用的响应式流并不是用JDK9平台的,而是一个叫做Reactor响应式流库。所以,入门WebFlux其实更多是了解怎么使用Reactor的API,下面我们来看看~

Reactor是一个响应式流,它也有对应的发布者(Publisher ),Reactor的发布者用两个类来表示:

  • Mono(返回0或1个元素)

  • Flux(返回0-n个元素)

而消费者则是Spring框架帮我们去完成

下面我们来看一个简单的例子(基于WebFlux环境构建):

// 阻塞5秒钟
private String createStr() {
    try {
        TimeUnit.SECONDS.sleep(5);
    } catch (InterruptedException e) {
    }
    return "some string";
}

// 普通的SpringMVC方法
@GetMapping("/1")
private String get1() {
    log.info("get1 start");
    String result = createStr();
    log.info("get1 end.");
    return result;
}

// WebFlux(返回的是Mono)
@GetMapping("/2")
private Mono get2() {
    log.info("get2 start");
    Mono result = Mono.fromSupplier(() -> createStr());
    log.info("get2 end.");
    return result;
}

首先,值得说明的是,我们构建WebFlux环境启动时,应用服务器默认是Netty的:

328a85f3100a4b30b0b5bf3f4fa4e2aa.webp基于Netty

我们分别来访问一下SpringMVC的接口和WebFlux的接口,看一下有什么区别:

SpringMVC:

cc31a368b2363e3decfd09eb088116d9.webpSpringMVC

WebFlux:

ec77d80be6e3b41a86dcf3469e200b3d.webpWebFlux

从调用者(浏览器)的角度而言,是感知不到有什么变化的,因为都是得等待5s才返回数据。但是,从服务端的日志我们可以看出,WebFlux是直接返回Mono对象的(而不是像SpringMVC一直同步阻塞5s,线程才返回)。

这正是WebFlux的好处:能够以固定的线程来处理高并发(充分发挥机器的性能)。

WebFlux还支持服务器推送(SSE - >Server Send Event),我们来看个例子:

/**
     * Flux : 返回0-n个元素
     * 注:需要指定MediaType
     * @return
     */

@GetMapping(value = "/3", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
private Flux flux() {
    Flux result = Flux
        .fromStream(IntStream.range(15).mapToObj(i -> {
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
            }
            return "flux data--" + i;
        }));
    return result;
}

效果就是每秒会给浏览器推送数据:

1dd3104a10c9b039e20830846b6cdb5a.webp服务器推送

WebFlux我还没写完,这篇写了WebFlux支持SpringMVC那套注解来开发,下篇写写如何使用WebFlux另一种模式(Functional Endpoints)来开发以及一些常见的问题还需要补充一下~


两年呕心沥血的文章「面试题」「基础」「进阶」这里全都有!

300多篇原创技术文章海量视频资源精美脑图面试题

长按扫码可关注获取 

在看和分享对我非常重要!febdad5ad9f65501b6f485dad0fc554a.webp

创作不易,各位的支持和认可,就是我创作的最大动力,我们下篇文章见! 求点赞 求关注️  求分享? 求留言?

6c144579482706c8715e9afc0a0bc7ad.webp

点击阅读原文,关注我的GitHub

浏览 33
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报