知乎 | 深度学习有哪些常用的Tricks?

共 3627字,需浏览 8分钟

 ·

2021-07-04 20:47

作者丨DOTA、永无止境、冯迁
来源丨知乎问答
编辑丨极市平台
本文整理自知乎,如有侵权,请联系后台删文

问答来源:https://www.zhihu.com/question/30712664

# 回答一

作者:DOTA

京东算法工程师

来源链接:https://zhuanlan.zhihu.com/p/352971645

还是蛮多的,之前总结过一次,在这里搬运一下,DOTA:大道至简:算法工程师炼丹Trick手册

https://zhuanlan.zhihu.com/p/352971645

Focal Loss

针对类别不平衡问题,用预测概率对不同类别的loss进行加权。Focal loss对CE loss增加了一个调制系数来降低容易样本的权重值,使得训练过程更加关注困难样本。

loss = -np.log(p) loss = (1-p)^G * loss

Dropout

随机丢弃,抑制过拟合,提高模型鲁棒性。

Normalization

Batch Normalization 于2015年由 Google 提出,开 Normalization 之先河。其规范化针对单个神经元进行,利用网络训练时一个 mini-batch 的数据来计算该神经元的均值和方差,因而称为 Batch Normalization。

x = (x - x.mean()) / x.std()

relu

用极简的方式实现非线性激活,缓解梯度消失。

x = max(x, 0)

Cyclic LR

每隔一段时间重启学习率,这样在单位时间内能收敛到多个局部最小值,可以得到很多个模型做集成。

scheduler = lambda x: ((LR_INIT-LR_MIN)/2)*(np.cos(PI*(np.mod(x-1,CYCLE)/(CYCLE)))+1)+LR_MIN

With Flooding

当training loss大于一个阈值时,进行正常的梯度下降;当training loss低于阈值时,会反过来进行梯度上升,让training loss保持在一个阈值附近,让模型持续进行"random walk",并期望模型能被优化到一个平坦的损失区域,这样发现test loss进行了double decent。

flood = (loss - b).abs() + b

Group Normalization


Face book AI research(FAIR)吴育昕-恺明联合推出重磅新作Group Normalization(GN),提出使用Group Normalization 替代深度学习里程碑式的工作Batch normalization。一句话概括,Group Normbalization(GN)是一种新的深度学习归一化方式,可以替代BN。
def GroupNorm(x, gamma, beta, G, eps=1e-5):    # x: input features with shape [N,C,H,W]    # gamma, beta: scale and offset, with shape [1,C,1,1]    # G: number of groups for GN    N, C, H, W = x.shape    x = tf.reshape(x, [N, G, C // G, H, W])    mean, var = tf.nn.moments(x, [2, 3, 4], keep dims=True)    x = (x - mean) / tf.sqrt(var + eps)    x = tf.reshape(x, [N, C, H, W])    return x * gamma + beta

Label Smoothing

abel smoothing将hard label转变成soft label,使网络优化更加平滑。标签平滑是用于深度神经网络(DNN)的有效正则化工具,该工具通过在均匀分布和hard标签之间应用加权平均值来生成soft标签。它通常用于减少训练DNN的过拟合问题并进一步提高分类性能。

targets = (1 - label_smooth) * targets + label_smooth / num_classes

Wasserstein GAN

  • 彻底解决GAN训练不稳定的问题,不再需要小心平衡生成器和判别器的训练程度
  • 基本解决了Collapse mode的问题,确保了生成样本的多样性训练过程中终于有一个像交叉熵、准确率这样的数值来指示
  • 训练的进程,数值越小代表GAN训练得越好,代表生成器产生的图像质量越高
  • 不需要精心设计的网络架构,最简单的多层全连接网络就可以做到以上3点。

Skip Connection

一种网络结构,提供恒等映射的能力,保证模型不会因网络变深而退化。

F(x) = F(x) + x

参考文献

  • https://www.zhihu.com/question/427088601
  • https://arxiv.org/pdf/1701.07875.pdf
  • https://zhuanlan.zhihu.com/p/25071913
  • https://www.zhihu.com/people/yuconan/posts


# 回答二

作者:永无止境

来源链接:

https://www.zhihu.com/question/30712664/answer/1341368789

在噪声较强的时候,可以考虑采用软阈值化作为激活函数:



软阈值化几乎是降噪的必备步骤,但是阈值τ该怎么设置呢?

阈值τ不能太大,否则所有的输出都是零,就没有意义了。而且,阈值不能为负。

针对这个问题,深度残差收缩网络[1][2]提供了一个思路,设计了一个特殊的子网络来自动设置:



Zhao M, Zhong S, Fu X, Tang B, Pecht M. Deep residual shrinkage networks for fault diagnosis. IEEE Transactions on Industrial Informatics. 2019 Sep 26;16(7):4681-90.


参考:


^深度残差收缩网络:从删除冗余特征的灵活度进行探讨 https://zhuanlan.zhihu.com/p/118493090
^深度残差收缩网络:一种面向强噪声数据的深度学习方法 https://zhuanlan.zhihu.com/p/115241985

# 回答三

作者:冯迁

来源链接:https://www.zhihu.com/question/30712664/answer/1816283937

赞比较多的给了些,损失函数(focal),模型结构(identity skip),训练方面(strategy on learning rate),稳定性方面(normalization),复杂泛化性(drop out),宜优化性(relu,smooth label)等,这些都可以扩展。


focal 可以扩展到centernet loss,结构有尺度fpn,重复模块,堆叠concatenate,splite,cross fusion等,训练方面有teaching,step learning,对抗(本身是个思想),多阶段优化,progress learning,稳定性方面,batch normal,instance normal,group normal之外,还有谱范数等,复杂性还有正则l1/2等,宜优化性,可以扩展到检测的anchor等。


dl你得说优化器吧,把动量,一二阶考虑进来,梯度方向和一阶动量的折中方向,把随机考虑进来sgd


以上可能带来最多10的收益,你得搞数据啊


数据方面的处理clean,various ,distribution,aug data等更重要(逃…


“理论”在收敛速度,稳定,泛化,通用,合理等方面着手,性能在数据方面着手。


往期精彩:

 男人30岁,不该有暮气

【原创首发】机器学习公式推导与代码实现30讲.pdf

【原创首发】深度学习语义分割理论与实战指南.pdf

 谈中小企业算法岗面试

 算法工程师研发技能表

 真正想做算法的,不要害怕内卷

 算法工程师的日常,一定不能脱离产业实践

 技术学习不能眼高手低

 技术人要学会自我营销

 做人不能过拟合

求个在看

浏览 79
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报