Nature子刊:神经形态计算更进一步,科学家实现人工模拟神经元和突触
然而,目前基于互补金属氧化物半导体(CMOS)的神经形态电路,只是简单地连接人工神经元和突触而没有协同相互作用,而神经元和突触的同时实现仍然是一个挑战。
为了解决这些问题,由韩国科学技术高等研究院材料科学与工程系 Keon Jae Lee 教授领导的研究团队,通过在单个记忆单元中引入神经元-突触相互作用,来实现人类的生物学工作机制,代替了传统的电连接人工神经元和突触装置的方法。
Keon Jae Lee 教授解释说,“神经元和突触相互作用以建立认知功能,例如记忆和学习,因此模拟两者是类脑人工智能的基本要素。开发的神经形态记忆装置还模仿了再训练效应,通过在神经元和突触之间实现正反馈效应,可以快速学习被遗忘的信息。”
人脑是由 1000 亿个神经元和 100 万亿个突触组成的复杂网络。人脑的学习和记忆等智力能力来自近千亿个神经元与突触互连的复杂网络。一个神经元结合突触前的输入刺激来发射电脉冲,而一个突触连接相邻的神经元以在整个网络中传输信号。
许多细胞和分子研究也表明,神经元不仅参与信息处理,还通过内在可塑性促进记忆形成,从而调节神经元的兴奋性。突触可塑性和神经元内在可塑性同时发生在所有主要的学习形式中,使大脑能够高效地执行智能任务和概率处理。
受认知人类大脑的启发,神经形态计算以生物神经网络的硬件体现为目标,以实现人工智能(AI)。与基于 CMOS 的方法相比,单个神经元和突触的设备实现已被广泛研究,因为它们具有出色的能源效率和可扩展性。
人工神经元和突触的集成对于开发具有高级认知功能的神经形态智能计算机至关重要。在此之前,也已经报道了能够进行模式识别和简单决策的忆阻神经网络,显示出优于传统冯诺依曼架构的性能。
然而,尽管在学习和记忆中起重要作用,但很少有研究证明人工神经元中内在可塑性的模拟。此外,内在和突触可塑性之间的协同相互作用应涉及各种形式的学习,如经典条件反射、空间学习和再训练。
之前的研究报告证明了在单个设备中的易失性和非易失性切换,但这些研究是表明从易失性到非易失性切换的转变,而不是两种切换机制与神经突触相互作用的共存。应在单个设备中实现神经元兴奋性和突触权重变化,以同时解决受脑启发的认知 AI 中的神经可塑性。
这是一种纳米级的神经形态存储设备,它可以在一个单元中同时模拟神经元和突触,其中短期和长期记忆共存,使用分别模拟神经元和突触特征的易失性和非易失性记忆装置。阈值开关器件用作易失性存储器,相变存储器用作非易失性器件。两个薄膜器件集成在一起,没有中间电极,实现了神经形态记忆中神经元和突触的功能适应性。
研究人员表示,这是朝着用半导体设备严格模拟人脑的神经形态计算目标迈出的又一步。
参考资料:
https://news.kaist.ac.kr/newsen/html/news/?mode=V&mng_no=20770
https://www.nature.com/articles/s41467-022-30432-2
评论