从0开始学RAG之Query分解
共 6106字,需浏览 13分钟
·
2024-04-11 20:42
原文地址:https://zhuanlan.zhihu.com/p/685746861
类型: 技术分享
本文为 @lucas大叔 投稿原创转载!如有侵权,麻烦告知删除!
Query分解是通过将问题分解为子问题来改善问答效果的策略,分两条实现路径:(1)序列求解,将上一个子问题的答案与当前问题一并扔给LLM生成答案,再把当前生成答案与下一个子问题一起给LLM生成答案,直到最后一个子问题生成最终答案;(2)并行的独立回答问题,然后将多路答案合并为最终答案。
下面的示意图很好地诠释了两种技术实现路径的原理。
序列求解的思想来自least-to-most prompting和IRCoT这两篇论文。
在least-to-most prompting中,作者认为CoT提示在自然语言推理任务上表现抢眼,但在解决比给的样例更难的问题时就乏善可陈了。为了解决easy-to-hard泛化问题,大佬们提出了least-to-most prompting。分两步解决问题:首先将复杂问题分解成一系列更容易的子问题,然后依次求解这些子问题,用先前解决的子问题答案助力当前子问题的解决。这两步都是通过few-shot prompting来实现,不需要训练或者微调。
在IRCoT中作者提出了类似的想法,对多步问答在CoT中交错检索,使用检索到的结果改善CoT。
更多技术细节,大家可以参考上述的两篇论文。下面我们转入代码实战环节。
首先写提示模板,将问题分解为若干个子问题。
from langchain.prompts import ChatPromptTemplate
# Decomposition
template = """You are a helpful assistant that generates multiple sub-questions related to an input question. \n
The goal is to break down the input into a set of sub-problems / sub-questions that can be answers in isolation. \n
Generate multiple search queries related to: {question} \n
Output (3 queries):"""
prompt_decomposition = ChatPromptTemplate.from_template(template)
构造分解问题的chain,并将问题分解为几个子问题。
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
# LLM
llm = ChatOpenAI(temperature=0)
# Chain
generate_queries_decomposition = ( prompt_decomposition | llm | StrOutputParser() | (lambda x: x.split("\n")))
# Run
question = "What are the main components of an LLM-powered autonomous agent system?"
questions = generate_queries_decomposition.invoke({"question":question})
Answer recursively
如上面序列求解流程所示,构建序列回答的prompt模板,基于context和qa对回答问题。
# Prompt
template = """Here is the question you need to answer:
\n --- \n {question} \n --- \n
Here is any available background question + answer pairs:
\n --- \n {q_a_pairs} \n --- \n
Here is additional context relevant to the question:
\n --- \n {context} \n --- \n
Use the above context and any background question + answer pairs to answer the question: \n {question}
"""
decomposition_prompt = ChatPromptTemplate.from_template(template)
初始化q_a_pairs为空,查询第一个问题时,没有qa对信息。从第二个问题开
始,除了当前的问题,还有前面所有轮的qa对信息,再加上当前问题检索回来的context一起给LLM得到答案。
from operator import itemgetter
from langchain_core.output_parsers import StrOutputParser
def format_qa_pair(question, answer):
"""Format Q and A pair"""
formatted_string = ""
formatted_string += f"Question: {question}\nAnswer: {answer}\n\n"
return formatted_string.strip()
# llm
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
#
q_a_pairs = ""
for q in questions:
rag_chain = (
{"context": itemgetter("question") | retriever,
"question": itemgetter("question"),
"q_a_pairs": itemgetter("q_a_pairs")}
| decomposition_prompt
| llm
| StrOutputParser())
answer = rag_chain.invoke({"question":q,"q_a_pairs":q_a_pairs})
q_a_pair = format_qa_pair(q,answer)
q_a_pairs = q_a_pairs + "\n---\n"+ q_a_pair
Answer individually
相比于序列回答,并行独立回答逻辑简单的多。每个子问题各自调用LLM回答自己的提问,汇总得到的答案。
# Answer each sub-question individually
from langchain import hub
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
# RAG prompt
prompt_rag = hub.pull("rlm/rag-prompt")
def retrieve_and_rag(question,prompt_rag,sub_question_generator_chain):
"""RAG on each sub-question"""
# Use our decomposition /
sub_questions = sub_question_generator_chain.invoke({"question":question})
# Initialize a list to hold RAG chain results
rag_results = []
for sub_question in sub_questions:
# Retrieve documents for each sub-question
retrieved_docs = retriever.get_relevant_documents(sub_question)
# Use retrieved documents and sub-question in RAG chain
answer = (prompt_rag | llm | StrOutputParser()).invoke({"context": retrieved_docs,
"question": sub_question})
rag_results.append(answer)
return rag_results,sub_questions
# Wrap the retrieval and RAG process in a RunnableLambda for integration into a chain
answers, questions = retrieve_and_rag(question, prompt_rag, generate_queries_decomposition)
提示模板的指令也简单粗暴,告诉模型这是一组QA对,你用它们来合成原始问题的答案吧!
def format_qa_pairs(questions, answers):
"""Format Q and A pairs"""
formatted_string = ""
for i, (question, answer) in enumerate(zip(questions, answers), start=1):
formatted_string += f"Question {i}: {question}\nAnswer {i}: {answer}\n\n"
return formatted_string.strip()
context = format_qa_pairs(questions, answers)
# Prompt
template = """Here is a set of Q+A pairs:
{context}
Use these to synthesize an answer to the question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
final_rag_chain = (
prompt
| llm
| StrOutputParser()
)
final_rag_chain.invoke({"context":context,"question":question})