【手撕算法】PatchMatch图像修复算法

共 10415字,需浏览 21分钟

 ·

2021-04-13 10:34

点击上方AI算法与图像处理”,选择加"星标"或“置顶”

重磅干货,第一时间送达






PatchMatch算法出自Barnes的论文

PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing
PatchMatch 算法就是一个找近似最近邻(Approximate Nearest neigbhor)的方法,要比其他ANN算法快上10倍+。
将下面的图理解了,就基本理解了整个算法。
看上图时,我们以蓝色为主颜色。A代表原图像,矩形框代表待修复的patch块,要修复patch_A块就需要在B(也是原图)中搜索一个最合适的块patch_B,而从patch_A到patch_B的偏移量,就是上图箭头,也就是offset。
蓝色为主patch块,红色是蓝色向左移一个像素,绿色是蓝色向上移一个像素。
上图  (a):随机初始化  (b):传播  (c):随机扰动搜索
PatchMatch 的核心思想是利用图像的连续性(consistence), 一个图像A的patch_A(蓝色)附近的Patch块(红色绿色)的最近邻(B中的红色绿色框)最有可能出现在Patch_A的最近邻(B中的蓝色框)附近,利用这种图像的连续性大量减少搜索的范围,通过迭代的方式保证大多数点能尽快收敛。
PatchMatch算法是对所有待修复像素迭代修复的,而不是像Criminisi或FMM算法对待修复区域像素优先级排序后进行渐进修复的。
算法步骤

首先是建立图像的下采样金字塔模型,代码中设定为五层,建立模型后

对A的待修复区域每个patch块随机在B已知区域中匹配一个patch块,即初始化偏置地图(上图a步骤)。

/*********************************函数声明:初始化偏置图像参数:NONE注释:NONE测试:NONE**********************************/void PatchMatch::InitOff(Mat Mask, Mat &Off){  //为方便起见,将所有的都附上,要求不能赋值到非搜索区域  //初始化格式  Off = Mat(Mask.size(), CV_32FC2, Scalar::all(0));//2维无符号32位精度浮点数
for (int i = 0; i < Mask.rows; i++) { for (int j = 0; j < Mask.cols; j++) { //不考虑search区域,没有破损,他们的最佳偏移向量当然是0,自己 if (Mask.at<uchar>(i, j) == search) { Off.at<Vec2f>(i, j)[0] = 0; //<Vec2f> 向量,2维,浮点数 Off.at<Vec2f>(i, j)[1] = 0; } else//处理hole,采用随机偏置 { //先初始化2个偏置数r_col,r_row int r_col = rand() % Mask.cols; //rand()产生随机数,主要是产生一个偏置的初始值 int r_row = rand() % Mask.rows; r_col = r_col + j < Mask.cols ? r_col : r_col - Mask.cols;//边界检测 r_row = r_row + i < Mask.rows ? r_row : r_row - Mask.rows;
//为什么要有这个循环?因为一次的随机赋值,很可能会出现偏置后的块跑到破损区域,或者是超出限定搜索框的边界 while ( !(Mask.at<uchar>(r_row + i, r_col + j) == search //这里加上I,j,是因为他是A投影到B中的搜索偏置 && abs(r_row) < searchrowratio*Mask.rows)) //searchrowratio=0.5,搜索的时候,确保r_row偏置不会太远,一定是在原图像的大小里 { r_col = rand() % Mask.cols; r_row = rand() % Mask.rows;
//边界检测 r_col = r_col + j < Mask.cols ? r_col : r_col - Mask.cols; r_row = r_row + i < Mask.rows ? r_row : r_row - Mask.rows; }
//赋偏置值 Off.at<Vec2f>(i, j)[0] = r_row; Off.at<Vec2f>(i, j)[1] = r_col; } } }}

之后从低分辨率开始,对于每一层金字塔模型进行迭代:

每一次迭代都会遍历原图A待修复区域所有像素。当遍历到当前像素时,执行下面的步骤来进行修复:

1


步骤一:传播(图中b步骤)

传播会计算原图A当前像素块patch_A(蓝色)对应的B中的patch_B_1,patch_A上方(绿色)(奇数次迭代为下方)对应的B中的patch_B_2,patch_A左侧(红色)(奇数次迭代为右侧)对应的B中的patch_B_3这三个patch块中与patch_A相似度最高的patch块。

计算相似度函数为

//以块为单位,用所有像素点的相同颜色通道的差平方来简单判断相似度float PatchMatch::Distance(Mat Dst, Mat Src){  float distance = 0;
for (int i = 0; i < Dst.rows; i++) { for (int j = 0; j < Dst.cols; j++) { for (int k = 0; k < 3; k++)//K=3个颜色通道 { int tem = Src.at < Vec3b >(i, j)[k] - Dst.at < Vec3b >(i, j)[k]; distance += tem * tem;//差平方 } } }
return distance;}

传播函数:

//迭代第一步:传播//(now_row, now_col):patch里的像素//odd:当前迭代次void PatchMatch::Propagation(Mat Dst, Mat Src, Mat Mask, Mat &Off, int row, int col,int odd){  Mat DstPatch = GetPatch(Dst, row, col);//获取长度为 patchsize = 3 的边界框, (row, col)代表的是中心像素点坐标
if (odd % 2 == 0)//偶次迭代 { //提取(row, col)的match块 Mat SrcPatch = GetPatch(Src, row + Off.at < Vec2f >(row, col)[0], col + Off.at < Vec2f >(row, col)[1]);
//提取(row, col-1)的match块 Mat LSrcPatch = GetPatch(Src, row + Off.at < Vec2f >(row, col - 1)[0], col - 1 + Off.at < Vec2f >(row, col - 1)[1]);
//提取(row-1, col)的match块 Mat USrcPatch = GetPatch(Src, row - 1 + Off.at < Vec2f >(row - 1, col)[0], col + Off.at < Vec2f >(row - 1, col)[1]);
//返回上面4个块最相似的块的代表数字,用于switch判断 int location = GetMinPatch1(DstPatch, SrcPatch, LSrcPatch, USrcPatch);
//利用上面的信息更新像素点的偏置地图 switch (location) { //若是1则不更新 case 2: Off.at < Vec2f >(row, col)[0] = Off.at < Vec2f >(row, col - 1)[0]; Off.at < Vec2f >(row, col)[1] = Off.at < Vec2f >(row, col - 1)[1] - 1; break; case 3: Off.at < Vec2f >(row, col)[0] = Off.at < Vec2f >(row - 1, col)[0] - 1; Off.at < Vec2f >(row, col)[1] = Off.at < Vec2f >(row - 1, col)[1]; break; } }
else//奇数次迭代 { Mat SrcPatch = GetPatch(Src, row + Off.at < Vec2f >(row, col)[0], col + Off.at < Vec2f >(row, col)[1]); Mat RSrcPatch = GetPatch(Src, row + Off.at < Vec2f >(row, col + 1)[0], col + 1 + Off.at < Vec2f >(row, col + 1)[1]); Mat DSrcPatch = GetPatch(Src, row + 1 + Off.at < Vec2f >(row + 1, col)[0], col + Off.at < Vec2f >(row + 1, col)[1]);
int location = GetMinPatch1(DstPatch, SrcPatch, RSrcPatch, DSrcPatch); switch (location) { case 2: Off.at < Vec2f >(row, col)[0] = Off.at < Vec2f >(row, col + 1)[0]; Off.at < Vec2f >(row, col)[1] = Off.at < Vec2f >(row, col + 1)[1] + 1; break; case 3: Off.at < Vec2f >(row, col)[0] = Off.at < Vec2f >(row + 1, col)[0] + 1; Off.at < Vec2f >(row, col)[1] = Off.at < Vec2f >(row + 1, col)[1]; break; } }}
2


步骤二:随机扰动搜索(图中c步骤)

为了避免陷入局部极值,再额外再随机生成几个patch位置作为候选patch块,若小于当前patch,则更新。

随机扰动会在原图A中,以当前像素为中心点,初始半径区域为全图,在此区域内随机找寻patch块并与patch_A原本对应的B中的patch块对比,若更相似则更新对应关系offset,然后以新的patch_B为中心,半径缩小一倍,继续搜索,直到半径缩小为1,更新完毕。

//迭代第二步:随机搜索//(row,col)=(now_row, now_col):修复patch里的像素void PatchMatch::RandomSearch(Mat Dst, Mat Src, Mat Mask, Mat &Off, int row, int col){  Mat DstPatch = GetPatch(Dst, row, col);//获取修复基准框,在框内操作
//迭代指数 int attenuate = 0;
while (true) { //获取随机参数,在 [-1;1] 间 float divcol = rand() % 2000 / 1000.0f - 1.0f; float divrow = rand() % 2000 / 1000.0f - 1.0f;
//减小框大小的公式,𝑢_𝑖=𝑣_0+𝑤*𝛼^𝑖*𝑅_𝑖 //行列分别处理,MaxWindow:原始框宽度;divcol:随机系数;pow(A,B):A的B次方。随迭代次数而变小的缩小系数;RandomAttenuation=0.5; float veccol = MaxWindow * pow(RandomAttenuation, attenuate)* divcol; float vecrow = MaxWindow * pow(RandomAttenuation, attenuate)* divrow;
float length = sqrt(veccol * veccol + vecrow * vecrow); //如果低于1个像素,没有意义,直接结束整个循环,对下一个像素处理 if (length < 1) break;
//x方向,前2项指向(row, col)的match块,后面是公式的后一项 int nowrow = row + Off.at < Vec2f >(row, col)[0] + vecrow; //y方向 int nowcol = col + Off.at < Vec2f >(row, col)[1] + veccol;
//判断随机搜索的patch不越界,在search内 if (nowcol >= 0 && nowcol <= Off.cols - 1 && nowrow >= 0 && nowrow <= Off.rows - 1 && Mask.at < uchar >(nowrow, nowcol) == search && abs(nowrow - row) < searchrowratio * Mask.rows)//abs:绝对值 { //取出原来的match块 Mat SrcPatch1 = GetPatch(Src, Off.at < Vec2f >(row, col)[0] + row, Off.at < Vec2f >(row, col)[1] + col); //取出现在的随机match块 Mat SrcPatch2 = GetPatch(Src, nowrow, nowcol);
//对比相似性,找出最好的块 int location = GetMinPatch2(DstPatch, SrcPatch1, SrcPatch2);
//结合最好的相似块给像素新的偏置值 switch (location) { case 2: Off.at < Vec2f >(row, col)[1] = nowcol - col; Off.at < Vec2f >(row, col)[0] = nowrow - row; break; } }
//迭代指数增加 attenuate++; }}

经过该两个步骤,本次迭代完毕。

当最终迭代完成后,就完成了整个修复过程。

算法效果

可以看到效果还是可以的,速度也比较快。

 End 


声明:部分内容来源于网络,仅供读者学术交流之目的。文章版权归原作者所有。如有不妥,请联系删除。


     
个人微信(如果没有备注不拉群!
请注明:地区+学校/企业+研究方向+昵称



下载1:何恺明顶会分享


AI算法与图像处理」公众号后台回复:何恺明,即可下载。总共有6份PDF,涉及 ResNet、Mask RCNN等经典工作的总结分析


下载2:终身受益的编程指南:Google编程风格指南


AI算法与图像处理」公众号后台回复:c++,即可下载。历经十年考验,最权威的编程规范!



   
下载3 CVPR2021

AI算法与图像处公众号后台回复:CVPR即可下载1467篇CVPR 2020论文 和 CVPR 2021 最新论文

点亮 ,告诉大家你也在看


浏览 114
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报