OpenCV :图像基本操作
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达 ![]()
转自:AI技术前线
01
加载图像
imread 功能是加载图像文件成为一个 Mat 对象,其中第一个参数表示图像文件名称,第二个参数表示加载的图像是什么类型,支持常见的三个参数值
IMREAD_UNCHANDED(<0) 表示加载原图,不做任何改变
IMREAD_GRAYSCALE(0) 表示吧原图作为灰度图像加载进来
IMREAD_COLOR(>0) 表示把原图作为 RGB 图像加载进来
# 导入 OpenCV 库import cv2 as cv# 加载图像img = cv.imread("./1.jpg")# 打印图像类型print(type(img))print(img)
图像显示
# 导入 OpenCV 库import cv2 as cv
# 加载图像img = cv.imread("./1.jpg")
# 图像的显示,也可以创建多个窗口cv.imshow("image",img)
# 等待时间,毫秒级,0 表示任意键终止cv.waitKey(0)cv.destroyAllWindows()
数据读取-图像
# 导入 OpenCV 库import cv2 as cv
# 灰色显示img = cv.imread("./1.jpg",cv.IMREAD_GRAYSCALE)
# 打印信息print(img)
# 导入 OpenCV 库import cv2 as cv
img = cv.imread("./1.jpg",cv.IMREAD_GRAYSCALE)cv.imshow("image",img)cv.waitKey(0)cv.destroyAllWindows()
截取部分图像数据
# 导入 OpenCV 库import cv2 as cv# 加载图像img = cv.imread("./1.jpg",)# 截取部分图像cat = img[0:200, 0:200]# 显示截取的图像cv.imshow("cat",cat)cv.waitKey(0)cv.destroyAllWindows()
颜色通道提取
# 导入 OpenCV 库import cv2 as cv
img = cv.imread("./1.jpg",)b,g,r = cv.split(img)
print(b)
# 导入 OpenCV 库import cv2 as cv
img = cv.imread("./1.jpg",)cur_img = img.copy()
# 注意参数的变化cur_img[:,:,0] = 0cur_img[:,:,1] = 0cv.imshow('R',cur_img)cv.waitKey(0)cv.destroyAllWindows()
# 导入 OpenCV 库import cv2 as cv
img = cv.imread("./1.jpg",)cur_img = img.copy()# 注意参数的变化cur_img[:,:,0] = 0cur_img[:,:,2] = 0cv.imshow('G',cur_img)cv.waitKey(0)cv.destroyAllWindows()
# 导入 OpenCV 库import cv2 as cv
img = cv.imread("./1.jpg",)cur_img = img.copy()# 注意参数的变化cur_img[:,:,1] = 0cur_img[:,:,2] = 0cv.imshow('B',cur_img)cv.waitKey(0)cv.destroyAllWindows()
# 导入 OpenCV 库import cv2 as cv# 导入 maplotlibimport matplotlib.pyplot as plt
img = cv.imread("./1.jpg",)# 定义图片显示大小top_size,buttom_size,left_size,right_size = (50,50,50,50)# 复制法,也就是复制最边缘像素replicate = cv.copyMakeBorder(img,top_size,buttom_size,left_size,right_size,borderType=cv.BORDER_REPLICATE)
# 反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcbajabcdefghjhgfedcbreflect = cv.copyMakeBorder(img,top_size,buttom_size,left_size,right_size,borderType=cv.BORDER_REFLECT)# 反射法,也就是以最边缘像素为轴、对称、gfedcbjabcdefghigfedcbareflect01 = cv.copyMakeBorder(img,top_size,buttom_size,left_size,right_size,borderType=cv.BORDER_REFLECT_101)# 外包装法 cdeifghjabcdefghjabcdefgwrap = cv.copyMakeBorder(img,top_size,buttom_size,left_size,right_size,borderType=cv.BORDER_WRAP)# 常量法,常数值填充constant = cv.copyMakeBorder(img,top_size,buttom_size,left_size,right_size,borderType=cv.BORDER_CONSTANT)# 设置图像位置plt.subplot(231)# 设置图像显示plt.imshow(img,'gray')# 设置标题plt.title('ORIGINAL')
plt.subplot(232)plt.imshow(replicate,'gray')plt.title("REPLICATE")
plt.subplot(233)plt.imshow(reflect,'gray')plt.title("REFLECT")
plt.subplot(234)plt.imshow(reflect01,'gray')plt.title("REPLICATE01")
plt.subplot(235)plt.imshow(wrap,'gray')plt.title("WRAP")
plt.subplot(236)plt.imshow(constant,'gray')plt.title("CONSTANT")# 图像显示plt.show()
BORDER_REPLICATE :复制法,也就是复制最边缘像素
BORDER_REFLECT :反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcbajabcdefghjhgfedcb(这里我也不是很明白,会的朋友请在评论区解释下,感谢)
BORDER_REFLECT_101 :反射法,也就是以最边缘像素为轴、对称、gfedcbjabcdefghigfedcba
BORDER_WRAP :外包装法 cdeifghjabcdefghjabcdefg
BORDER_CONSTANT :常量法,常数值填充
数值计算
import cv2 as cv
img = cv.imread("./1.jpg")
img2 = img + 10img[:5,:,0]
print(img)print("--------------------------")print(img2)
图像融合
import cv2 as cv
img = cv.imread("./1.jpg")img_cat = cv.imread("./2.jpg")
result = img + img_catprint(result)
import cv2 as cv
img = cv.imread("./1.jpg")img_cat = cv.imread("./2.jpg")
print(img.shape)print(img_cat.shape)
import cv2 as cv
img = cv.imread("./1.jpg")img_cat = cv.imread("./2.jpg")print(img.shape)# 设置与 img 一样的数值img_cat = cv.resize(img_cat,(721,300))print(img_cat.shape)
import cv2 as cvimport matplotlib.pyplot as plt
img = cv.imread("./1.jpg")img_cat = cv.imread("./2.jpg")# 设置与 img 一样的数值img_cat = cv.resize(img_cat,(721,300))# 设置宽度值res = cv.addWeighted(img,0.4,img_cat,0.6,0)
# 图像显示plt.imshow(res)plt.show()
图像保存
# 导入 OpenCV 库import cv2 as cv# 读取图像img = cv.imread("./1.jpg",cv.IMREAD_GRAYSCALE)# 图像保存# 第一个参数是图像要保存的路径,第二个图像是要保存的图像cv.imwrite("./demo.jpg",img)
数据读取-视频
video = cv2.VideoCapture("demo.mp4")
# 检查是否打开正确if video.isOpened(): # 我们都知道视频和游戏其实都是由图像组成的,通过访问图像的帧数连贯形成的,这里也是一样 # video.read() 一帧一帧地读取 # open 得到的是一个布尔值,就是 True 或者 False # frame 得到当前这一帧的图像 open, frame = video.read()else: open = False
while open: ret, frame = video.read() # 如果读到的帧数不为空,那么就继续读取,如果为空,就退出 if frame is None: break if ret == True: # 转换为灰度图 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow("video",gray) # 这里使用 waitKey 可以控制视频的播放速度,数值越小,播放速度越快 # 这里等于 27 也即是说按下 ESC 键即可退出该窗口 if cv2.waitKey(10) & 0xFF == 27: breakvideo.release()cv2.destroyAllWindows()
import cv2
video = cv2.VideoCapture("./demo.mp4")
# 检查是否打开正确if video.isOpened(): # 我们都知道视频和游戏其实都是由图像组成的,通过访问图像的帧数连贯形成的,这里也是一样 # video.read() 一帧一帧地读取 # open 得到的是一个布尔值,就是 True 或者 False # frame 得到当前这一帧的图像 open, frame = video.read()else: open = False
while open: ret, frame = video.read() # 如果读到的帧数不为空,那么就继续读取,如果为空,就退出 if frame is None: break if ret == True: # 转换为灰度图 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow("video",gray) # 这里使用 waitKey 可以控制视频的播放速度,数值越小,播放速度越快 # 这里等于 27 也即是说按下 ESC 键即可退出该窗口 if cv2.waitKey(10) & 0xFF == 27: breakvideo.release()cv2.destroyAllWindows()
注释掉设置灰色的部分
将原视频显示在窗口上
本文仅做学术分享,如有侵权,请联系删文。
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论
