JAVA实现BP神经网络算法
共 19746字,需浏览 40分钟
·
2020-07-31 11:17
点击上方蓝色字体,选择“标星公众号”
优质文章,第一时间送达
作者 | MrZhaoyx
来源 | cnblogs.com/MrZhaoyx/p/13271832.html
工作中需要预测一个过程的时间,就想到了使用BP神经网络来进行预测。
简介
BP神经网络(Back Propagation Neural Network)是一种基于BP算法的人工神经网络,其使用BP算法进行权值与阈值的调整。在20世纪80年代,几位不同的学者分别开发出了用于训练多层感知机的反向传播算法,David Rumelhart和James McClelland提出的反向传播算法是最具影响力的。其包含BP的两大主要过程,即工作信号的正向传播与误差信号的反向传播,分别负责了神经网络中输出的计算与权值和阈值更新。工作信号的正向传播是通过计算得到BP神经网络的实际输出,误差信号的反向传播是由后往前逐层修正权值与阈值,为了使实际输出更接近期望输出。
(1)工作信号正向传播。输入信号从输入层进入,通过突触进入隐含层神经元,经传递函数运算后,传递到输出层,并且在输出层计算出输出信号传出。当工作信号正向传播时,权值与阈值固定不变,神经网络中每层的状态只与前一层的净输出、权值和阈值有关。若正向传播在输出层获得到期望的输出,则学习结束,并保留当前的权值与阈值;若正向传播在输出层得不到期望的输出,则在误差信号的反向传播中修正权值与阈值。
(2)误差信号反向传播。在工作信号正向传播后若得不到期望的输出,则通过计算误差信号进行反向传播,通过计算BP神经网络的实际输出与期望输出之间的差值作为误差信号,并且由神经网络的输出层,逐层向输入层传播。在此过程中,每向前传播一层,就对该层的权值与阈值进行修改,由此一直向前传播直至输入层,该过程是为了使神经网络的结果与期望的结果更相近。
当进行一次正向传播和反向传播后,若误差仍不能达到要求,则该过程继续下去,直至误差满足精度,或者满足迭代次数等其他设置的结束条件。
推导请见 https://zh.wikipedia.org/wiki/%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD%E7%AE%97%E6%B3%95
BPNN结构
该BPNN为单输入层单隐含层单输出层结构
项目结构
ActivationFunction:激活函数的接口
BPModel:BP模型实体类
BPNeuralNetworkFactory:BP神经网络工厂,包括训练BP神经网络,计算,序列化等功能
BPParameter:BP神经网络参数实体类
Matrix:矩阵实体类
Sigmoid:Sigmoid传输函数,实现了ActivationFunction接口
实现代码
Matrix实体类
模拟了矩阵的基本运算方法。
import java.io.Serializable;
public class Matrix implements Serializable {
private double[][] matrix;
//矩阵列数
private int matrixColNums;
//矩阵行数
private int matrixRowNums;
/**
* 构造一个空矩阵
*/
public Matrix() {
this.matrix = null;
this.matrixColNums = 0;
this.matrixRowNums = 0;
}
/**
* 构造一个matrix矩阵
* @param matrix
*/
public Matrix(double[][] matrix) {
this.matrix = matrix;
this.matrixRowNums = matrix.length;
this.matrixColNums = matrix[0].length;
}
/**
* 构造一个rowNums行colNums列值为0的矩阵
* @param rowNums
* @param colNums
*/
public Matrix(int rowNums,int colNums) {
double[][] matrix = new double[rowNums][colNums];
for (int i = 0; i < rowNums; i++) {
for (int j = 0; j < colNums; j++) {
matrix[i][j] = 0;
}
}
this.matrix = matrix;
this.matrixRowNums = rowNums;
this.matrixColNums = colNums;
}
/**
* 构造一个rowNums行colNums列值为val的矩阵
* @param val
* @param rowNums
* @param colNums
*/
public Matrix(double val,int rowNums,int colNums) {
double[][] matrix = new double[rowNums][colNums];
for (int i = 0; i < rowNums; i++) {
for (int j = 0; j < colNums; j++) {
matrix[i][j] = val;
}
}
this.matrix = matrix;
this.matrixRowNums = rowNums;
this.matrixColNums = colNums;
}
public double[][] getMatrix() {
return matrix;
}
public void setMatrix(double[][] matrix) {
this.matrix = matrix;
this.matrixRowNums = matrix.length;
this.matrixColNums = matrix[0].length;
}
public int getMatrixColNums() {
return matrixColNums;
}
public int getMatrixRowNums() {
return matrixRowNums;
}
/**
* 获取矩阵指定位置的值
*
* @param x
* @param y
* @return
*/
public double getValOfIdx(int x, int y) throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
if (x > matrixRowNums - 1) {
throw new Exception("索引x越界");
}
if (y > matrixColNums - 1) {
throw new Exception("索引y越界");
}
return matrix[x][y];
}
/**
* 获取矩阵指定行
*
* @param x
* @return
*/
public Matrix getRowOfIdx(int x) throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
if (x > matrixRowNums - 1) {
throw new Exception("索引x越界");
}
double[][] result = new double[1][matrixColNums];
result[0] = matrix[x];
return new Matrix(result);
}
/**
* 获取矩阵指定列
*
* @param y
* @return
*/
public Matrix getColOfIdx(int y) throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
if (y > matrixColNums - 1) {
throw new Exception("索引y越界");
}
double[][] result = new double[matrixRowNums][1];
for (int i = 0; i < matrixRowNums; i++) {
result[i][1] = matrix[i][y];
}
return new Matrix(result);
}
/**
* 矩阵乘矩阵
*
* @param a
* @return
* @throws Exception
*/
public Matrix multiple(Matrix a) throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
if (a.getMatrix() == null) {
throw new Exception("参数矩阵为空");
}
if (matrixColNums != a.getMatrixRowNums()) {
throw new Exception("矩阵纬度不同,不可计算");
}
double[][] result = new double[matrixRowNums][a.getMatrixColNums()];
for (int i = 0; i < matrixRowNums; i++) {
for (int j = 0; j < a.getMatrixColNums(); j++) {
for (int k = 0; k < matrixColNums; k++) {
result[i][j] = result[i][j] + matrix[i][k] * a.getMatrix()[k][j];
}
}
}
return new Matrix(result);
}
/**
* 二维数组乘一个数字
*
* @param a
* @return
*/
public Matrix multiple(double a) throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
double[][] result = new double[matrixRowNums][matrixColNums];
for (int i = 0; i < matrixRowNums; i++) {
for (int j = 0; j < matrixColNums; j++) {
result[i][j] = matrix[i][j] * a;
}
}
return new Matrix(result);
}
/**
* 矩阵点乘
*
* @param a
* @return
*/
public Matrix pointMultiple(Matrix a) throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
if (a.getMatrix() == null) {
throw new Exception("参数矩阵为空");
}
if (matrixRowNums != a.getMatrixRowNums() && matrixColNums != a.getMatrixColNums()) {
throw new Exception("矩阵纬度不同,不可计算");
}
double[][] result = new double[matrixRowNums][matrixColNums];
for (int i = 0; i < matrixRowNums; i++) {
for (int j = 0; j < matrixColNums; j++) {
result[i][j] = matrix[i][j] * a.getMatrix()[i][j];
}
}
return new Matrix(result);
}
/**
* 矩阵加法
*
* @param a
* @return
*/
public Matrix plus(Matrix a) throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
if (a.getMatrix() == null) {
throw new Exception("参数矩阵为空");
}
if (matrixRowNums != a.getMatrixRowNums() && matrixColNums != a.getMatrixColNums()) {
throw new Exception("矩阵纬度不同,不可计算");
}
double[][] result = new double[matrixRowNums][matrixColNums];
for (int i = 0; i < matrixRowNums; i++) {
for (int j = 0; j < matrixColNums; j++) {
result[i][j] = matrix[i][j] + a.getMatrix()[i][j];
}
}
return new Matrix(result);
}
/**
* 矩阵减法
*
* @param a
* @return
*/
public Matrix subtract(Matrix a) throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
if (a.getMatrix() == null) {
throw new Exception("参数矩阵为空");
}
if (matrixRowNums != a.getMatrixRowNums() && matrixColNums != a.getMatrixColNums()) {
throw new Exception("矩阵纬度不同,不可计算");
}
double[][] result = new double[matrixRowNums][matrixColNums];
for (int i = 0; i < matrixRowNums; i++) {
for (int j = 0; j < matrixColNums; j++) {
result[i][j] = matrix[i][j] - a.getMatrix()[i][j];
}
}
return new Matrix(result);
}
/**
* 矩阵行求和
*
* @return
*/
public Matrix sumRow() throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
double[][] result = new double[matrixRowNums][1];
for (int i = 0; i < matrixRowNums; i++) {
for (int j = 0; j < matrixColNums; j++) {
result[i][1] += matrix[i][j];
}
}
return new Matrix(result);
}
/**
* 矩阵列求和
*
* @return
*/
public Matrix sumCol() throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
double[][] result = new double[1][matrixColNums];
for (int i = 0; i < matrixRowNums; i++) {
for (int j = 0; j < matrixColNums; j++) {
result[0][i] += matrix[i][j];
}
}
return new Matrix(result);
}
/**
* 矩阵所有元素求和
*
* @return
*/
public double sumAll() throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
double result = 0;
for (double[] doubles : matrix) {
for (int j = 0; j < matrixColNums; j++) {
result += doubles[j];
}
}
return result;
}
/**
* 矩阵所有元素求平方
*
* @return
*/
public Matrix square() throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
double[][] result = new double[matrixRowNums][matrixColNums];
for (int i = 0; i < matrixRowNums; i++) {
for (int j = 0; j < matrixColNums; j++) {
result[i][j] = matrix[i][j] * matrix[i][j];
}
}
return new Matrix(result);
}
/**
* 矩阵转置
*
* @return
*/
public Matrix transpose() throws Exception {
if (matrix == null) {
throw new Exception("矩阵为空");
}
double[][] result = new double[matrixColNums][matrixRowNums];
for (int i = 0; i < matrixRowNums; i++) {
for (int j = 0; j < matrixColNums; j++) {
result[j][i] = matrix[i][j];
}
}
return new Matrix(result);
}
@Override
public String toString() {
StringBuilder stringBuilder = new StringBuilder();
stringBuilder.append("\r\n");
for (int i = 0; i < matrixRowNums; i++) {
stringBuilder.append("# ");
for (int j = 0; j < matrixColNums; j++) {
stringBuilder.append(matrix[i][j]).append("\t ");
}
stringBuilder.append("#\r\n");
}
stringBuilder.append("\r\n");
return stringBuilder.toString();
}
}
Matrix代码
ActivationFunction接口
public interface ActivationFunction {
//计算值
double computeValue(double val);
//计算导数
double computeDerivative(double val);
}
ActivationFunction代码
Sigmoid
import java.io.Serializable;
public class Sigmoid implements ActivationFunction, Serializable {
@Override
public double computeValue(double val) {
return 1 / (1 + Math.exp(-val));
}
@Override
public double computeDerivative(double val) {
return computeValue(val) * (1 - computeValue(val));
}
}
Sigmoid代码
BPParameter
包含了BP神经网络训练所需的参数
import java.io.Serializable;
public class BPParameter implements Serializable {
//输入层神经元个数
private int inputLayerNeuronNum = 3;
//隐含层神经元个数
private int hiddenLayerNeuronNum = 3;
//输出层神经元个数
private int outputLayerNeuronNum = 1;
//归一化区间
private double normalizationMin = 0.2;
private double normalizationMax = 0.8;
//学习步长
private double step = 0.05;
//动量因子
private double momentumFactor = 0.2;
//激活函数
private ActivationFunction activationFunction = new Sigmoid();
//精度
private double precision = 0.000001;
//最大循环次数
private int maxTimes = 1000000;
public double getMomentumFactor() {
return momentumFactor;
}
public void setMomentumFactor(double momentumFactor) {
this.momentumFactor = momentumFactor;
}
public double getStep() {
return step;
}
public void setStep(double step) {
this.step = step;
}
public double getNormalizationMin() {
return normalizationMin;
}
public void setNormalizationMin(double normalizationMin) {
this.normalizationMin = normalizationMin;
}
public double getNormalizationMax() {
return normalizationMax;
}
public void setNormalizationMax(double normalizationMax) {
this.normalizationMax = normalizationMax;
}
public int getInputLayerNeuronNum() {
return inputLayerNeuronNum;
}
public void setInputLayerNeuronNum(int inputLayerNeuronNum) {
this.inputLayerNeuronNum = inputLayerNeuronNum;
}
public int getHiddenLayerNeuronNum() {
return hiddenLayerNeuronNum;
}
public void setHiddenLayerNeuronNum(int hiddenLayerNeuronNum) {
this.hiddenLayerNeuronNum = hiddenLayerNeuronNum;
}
public int getOutputLayerNeuronNum() {
return outputLayerNeuronNum;
}
public void setOutputLayerNeuronNum(int outputLayerNeuronNum) {
this.outputLayerNeuronNum = outputLayerNeuronNum;
}
public ActivationFunction getActivationFunction() {
return activationFunction;
}
public void setActivationFunction(ActivationFunction activationFunction) {
this.activationFunction = activationFunction;
}
public double getPrecision() {
return precision;
}
public void setPrecision(double precision) {
this.precision = precision;
}
public int getMaxTimes() {
return maxTimes;
}
public void setMaxTimes(int maxTimes) {
this.maxTimes = maxTimes;
}
}
BPParameter代码
BPModel
BP神经网络模型,包括权值与阈值及训练参数等属性
import java.io.Serializable;
public class BPModel implements Serializable {
//BP神经网络权值与阈值
private Matrix weightIJ;
private Matrix b1;
private Matrix weightJP;
private Matrix b2;
/*用于反归一化*/
private Matrix inputMax;
private Matrix inputMin;
private Matrix outputMax;
private Matrix outputMin;
/*BP神经网络训练参数*/
private BPParameter bpParameter;
/*BP神经网络训练情况*/
private double error;
private int times;
public Matrix getWeightIJ() {
return weightIJ;
}
public void setWeightIJ(Matrix weightIJ) {
this.weightIJ = weightIJ;
}
public Matrix getB1() {
return b1;
}
public void setB1(Matrix b1) {
this.b1 = b1;
}
public Matrix getWeightJP() {
return weightJP;
}
public void setWeightJP(Matrix weightJP) {
this.weightJP = weightJP;
}
public Matrix getB2() {
return b2;
}
public void setB2(Matrix b2) {
this.b2 = b2;
}
public Matrix getInputMax() {
return inputMax;
}
public void setInputMax(Matrix inputMax) {
this.inputMax = inputMax;
}
public Matrix getInputMin() {
return inputMin;
}
public void setInputMin(Matrix inputMin) {
this.inputMin = inputMin;
}
public Matrix getOutputMax() {
return outputMax;
}
public void setOutputMax(Matrix outputMax) {
this.outputMax = outputMax;
}
public Matrix getOutputMin() {
return outputMin;
}
public void setOutputMin(Matrix outputMin) {
this.outputMin = outputMin;
}
public BPParameter getBpParameter() {
return bpParameter;
}
public void setBpParameter(BPParameter bpParameter) {
this.bpParameter = bpParameter;
}
public double getError() {
return error;
}
public void setError(double error) {
this.error = error;
}
public int getTimes() {
return times;
}
public void setTimes(int times) {
this.times = times;
}
}
BPModel代码
BPNeuralNetworkFactory
BP神经网络工厂,包含了BP神经网络训练等功能
import java.io.*;
import java.util.*;
public class BPNeuralNetworkFactory {
/**
* 训练BP神经网络模型
* @param bpParameter
* @param inputAndOutput
* @return
*/
public BPModel trainBP(BPParameter bpParameter, Matrix inputAndOutput) throws Exception {
//BP神经网络的输出
BPModel result = new BPModel();
result.setBpParameter(bpParameter);
ActivationFunction activationFunction = bpParameter.getActivationFunction();
int inputNum = bpParameter.getInputLayerNeuronNum();
int hiddenNum = bpParameter.getHiddenLayerNeuronNum();
int outputNum = bpParameter.getOutputLayerNeuronNum();
double normalizationMin = bpParameter.getNormalizationMin();
double normalizationMax = bpParameter.getNormalizationMax();
double step = bpParameter.getStep();
double momentumFactor = bpParameter.getMomentumFactor();
double precision = bpParameter.getPrecision();
int maxTimes = bpParameter.getMaxTimes();
if(inputAndOutput.getMatrixColNums() != inputNum + outputNum){
throw new Exception("神经元个数不符,请修改");
}
//初始化权值
Matrix weightIJ = initWeight(inputNum, hiddenNum);
Matrix weightJP = initWeight(hiddenNum, outputNum);
//初始化阈值
Matrix b1 = initThreshold(hiddenNum);
Matrix b2 = initThreshold(outputNum);
//动量项
Matrix deltaWeightIJ0 = new Matrix(inputNum, hiddenNum);
Matrix deltaWeightJP0 = new Matrix(hiddenNum, outputNum);
Matrix deltaB10 = new Matrix(1, hiddenNum);
Matrix deltaB20 = new Matrix(1, outputNum);
Matrix input = new Matrix(new double[inputAndOutput.getMatrixRowNums()][inputNum]);
Matrix output = new Matrix(new double[inputAndOutput.getMatrixRowNums()][outputNum]);
for (int i = 0; i < inputAndOutput.getMatrixRowNums(); i++) {
for (int j = 0; j < inputNum; j++) {
input.getMatrix()[i][j] = inputAndOutput.getValOfIdx(i,j);
}
for (int j = 0; j < inputAndOutput.getMatrixColNums() - inputNum; j++) {
output.getMatrix()[i][j] = inputAndOutput.getValOfIdx(i,inputNum+j);
}
}
//归一化
Map inputAfterNormalize = normalize(input, normalizationMin, normalizationMax);
input = (Matrix) inputAfterNormalize.get("res");
Matrix inputMax = (Matrix) inputAfterNormalize.get("max");
Matrix inputMin = (Matrix) inputAfterNormalize.get("min");
result.setInputMax(inputMax);
result.setInputMin(inputMin);
Map outputAfterNormalize = normalize(output, normalizationMin, normalizationMax);
output = (Matrix) outputAfterNormalize.get("res");
Matrix outputMax = (Matrix) outputAfterNormalize.get("max");
Matrix outputMin = (Matrix) outputAfterNormalize.get("min");
result.setOutputMax(outputMax);
result.setOutputMin(outputMin);
int times = 1;
double E = 0;//误差
while (times < maxTimes) {
/*-----------------正向传播---------------------*/
//隐含层输入
Matrix jIn = input.multiple(weightIJ);
double[][] b1CopyArr = new double[jIn.getMatrixRowNums()][b1.getMatrixRowNums()];
//扩充阈值
for (int i = 0; i < jIn.getMatrixRowNums(); i++) {
b1CopyArr[i] = b1.getMatrix()[0];
}
Matrix b1Copy = new Matrix(b1CopyArr);
//加上阈值
jIn = jIn.plus(b1Copy);
//隐含层输出
Matrix jOut = computeValue(jIn,activationFunction);
//输出层输入
Matrix pIn = jOut.multiple(weightJP);
double[][] b2CopyArr = new double[pIn.getMatrixRowNums()][b2.getMatrixRowNums()];
//扩充阈值
for (int i = 0; i < pIn.getMatrixRowNums(); i++) {
b2CopyArr[i] = b2.getMatrix()[0];
}
Matrix b2Copy = new Matrix(b2CopyArr);
//加上阈值
pIn = pIn.plus(b2Copy);
//输出层输出
Matrix pOut = computeValue(pIn,activationFunction);
//计算误差
Matrix e = output.subtract(pOut);
E = computeE(e);//误差
//判断是否符合精度
if (Math.abs(E) <= precision) {
System.out.println("满足精度");
break;
}
/*-----------------反向传播---------------------*/
//J与P之间权值修正量
Matrix deltaWeightJP = e.multiple(step);
deltaWeightJP = deltaWeightJP.pointMultiple(computeDerivative(pIn,activationFunction));
deltaWeightJP = deltaWeightJP.transpose().multiple(jOut);
deltaWeightJP = deltaWeightJP.transpose();
//P层神经元阈值修正量
Matrix deltaThresholdP = e.multiple(step);
deltaThresholdP = deltaThresholdP.transpose().multiple(computeDerivative(pIn, activationFunction));
//I与J之间的权值修正量
Matrix deltaO = e.pointMultiple(computeDerivative(pIn,activationFunction));
Matrix tmp = weightJP.multiple(deltaO.transpose()).transpose();
Matrix deltaWeightIJ = tmp.pointMultiple(computeDerivative(jIn, activationFunction));
deltaWeightIJ = input.transpose().multiple(deltaWeightIJ);
deltaWeightIJ = deltaWeightIJ.multiple(step);
//J层神经元阈值修正量
Matrix deltaThresholdJ = tmp.transpose().multiple(computeDerivative(jIn, activationFunction));
deltaThresholdJ = deltaThresholdJ.multiple(-step);
if (times == 1) {
//更新权值与阈值
weightIJ = weightIJ.plus(deltaWeightIJ);
weightJP = weightJP.plus(deltaWeightJP);
b1 = b1.plus(deltaThresholdJ);
b2 = b2.plus(deltaThresholdP);
}else{
//加动量项
weightIJ = weightIJ.plus(deltaWeightIJ).plus(deltaWeightIJ0.multiple(momentumFactor));
weightJP = weightJP.plus(deltaWeightJP).plus(deltaWeightJP0.multiple(momentumFactor));
b1 = b1.plus(deltaThresholdJ).plus(deltaB10.multiple(momentumFactor));
b2 = b2.plus(deltaThresholdP).plus(deltaB20.multiple(momentumFactor));
}
deltaWeightIJ0 = deltaWeightIJ;
deltaWeightJP0 = deltaWeightJP;
deltaB10 = deltaThresholdJ;
deltaB20 = deltaThresholdP;
times++;
}
result.setWeightIJ(weightIJ);
result.setWeightJP(weightJP);
result.setB1(b1);
result.setB2(b2);
result.setError(E);
result.setTimes(times);
System.out.println("循环次数:" + times + ",误差:" + E);
return result;
}
/**
* 计算BP神经网络的值
* @param bpModel
* @param input
* @return
*/
public Matrix computeBP(BPModel bpModel,Matrix input) throws Exception {
if (input.getMatrixColNums() != bpModel.getBpParameter().getInputLayerNeuronNum()) {
throw new Exception("输入矩阵纬度有误");
}
ActivationFunction activationFunction = bpModel.getBpParameter().getActivationFunction();
Matrix weightIJ = bpModel.getWeightIJ();
Matrix weightJP = bpModel.getWeightJP();
Matrix b1 = bpModel.getB1();
Matrix b2 = bpModel.getB2();
double[][] normalizedInput = new double[input.getMatrixRowNums()][input.getMatrixColNums()];
for (int i = 0; i < input.getMatrixRowNums(); i++) {
for (int j = 0; j < input.getMatrixColNums(); j++) {
normalizedInput[i][j] = bpModel.getBpParameter().getNormalizationMin()
+ (input.getValOfIdx(i,j) - bpModel.getInputMin().getValOfIdx(0,j))
/ (bpModel.getInputMax().getValOfIdx(0,j) - bpModel.getInputMin().getValOfIdx(0,j))
* (bpModel.getBpParameter().getNormalizationMax() - bpModel.getBpParameter().getNormalizationMin());
}
}
Matrix normalizedInputMatrix = new Matrix(normalizedInput);
Matrix jIn = normalizedInputMatrix.multiple(weightIJ);
double[][] b1CopyArr = new double[jIn.getMatrixRowNums()][b1.getMatrixRowNums()];
//扩充阈值
for (int i = 0; i < jIn.getMatrixRowNums(); i++) {
b1CopyArr[i] = b1.getMatrix()[0];
}
Matrix b1Copy = new Matrix(b1CopyArr);
//加上阈值
jIn = jIn.plus(b1Copy);
//隐含层输出
Matrix jOut = computeValue(jIn,activationFunction);
//输出层输入
Matrix pIn = jOut.multiple(weightJP);
double[][] b2CopyArr = new double[pIn.getMatrixRowNums()][b2.getMatrixRowNums()];
//扩充阈值
for (int i = 0; i < pIn.getMatrixRowNums(); i++) {
b2CopyArr[i] = b2.getMatrix()[0];
}
Matrix b2Copy = new Matrix(b2CopyArr);
//加上阈值
pIn = pIn.plus(b2Copy);
//输出层输出
Matrix pOut = computeValue(pIn,activationFunction);
//反归一化
Matrix result = inverseNormalize(pOut, bpModel.getBpParameter().getNormalizationMax(), bpModel.getBpParameter().getNormalizationMin(), bpModel.getOutputMax(), bpModel.getOutputMin());
return result;
}
//初始化权值
private Matrix initWeight(int x,int y){
Random random=new Random();
double[][] weight = new double[x][y];
for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {
weight[i][j] = 2*random.nextDouble()-1;
}
}
return new Matrix(weight);
}
//初始化阈值
private Matrix initThreshold(int x){
Random random = new Random();
double[][] result = new double[1][x];
for (int i = 0; i < x; i++) {
result[0][i] = 2*random.nextDouble()-1;
}
return new Matrix(result);
}
/**
* 计算激活函数的值
* @param a
* @return
*/
private Matrix computeValue(Matrix a, ActivationFunction activationFunction) throws Exception {
if (a.getMatrix() == null) {
throw new Exception("参数值为空");
}
double[][] result = new double[a.getMatrixRowNums()][a.getMatrixColNums()];
for (int i = 0; i < a.getMatrixRowNums(); i++) {
for (int j = 0; j < a.getMatrixColNums(); j++) {
result[i][j] = activationFunction.computeValue(a.getValOfIdx(i,j));
}
}
return new Matrix(result);
}
/**
* 激活函数导数的值
* @param a
* @return
*/
private Matrix computeDerivative(Matrix a , ActivationFunction activationFunction) throws Exception {
if (a.getMatrix() == null) {
throw new Exception("参数值为空");
}
double[][] result = new double[a.getMatrixRowNums()][a.getMatrixColNums()];
for (int i = 0; i < a.getMatrixRowNums(); i++) {
for (int j = 0; j < a.getMatrixColNums(); j++) {
result[i][j] = activationFunction.computeDerivative(a.getValOfIdx(i,j));
}
}
return new Matrix(result);
}
/**
* 数据归一化
* @param a 要归一化的数据
* @param normalizationMin 要归一化的区间下限
* @param normalizationMax 要归一化的区间上限
* @return
*/
private Map normalize(Matrix a, double normalizationMin, double normalizationMax) throws Exception {
HashMap result = new HashMap<>();
double[][] maxArr = new double[1][a.getMatrixColNums()];
double[][] minArr = new double[1][a.getMatrixColNums()];
double[][] res = new double[a.getMatrixRowNums()][a.getMatrixColNums()];
for (int i = 0; i < a.getMatrixColNums(); i++) {
List tmp = new ArrayList();
for (int j = 0; j < a.getMatrixRowNums(); j++) {
tmp.add(a.getValOfIdx(j,i));
}
double max = (double) Collections.max(tmp);
double min = (double) Collections.min(tmp);
//数据归一化(注:若max与min均为0则不需要归一化)
if (max != 0 || min != 0) {
for (int j = 0; j < a.getMatrixRowNums(); j++) {
res[j][i] = normalizationMin + (a.getValOfIdx(j,i) - min) / (max - min) * (normalizationMax - normalizationMin);
}
}
maxArr[0][i] = max;
minArr[0][i] = min;
}
result.put("max", new Matrix(maxArr));
result.put("min", new Matrix(minArr));
result.put("res", new Matrix(res));
return result;
}
/**
* 反归一化
* @param a 要反归一化的数据
* @param normalizationMin 要反归一化的区间下限
* @param normalizationMax 要反归一化的区间上限
* @param dataMax 数据最大值
* @param dataMin 数据最小值
* @return
*/
private Matrix inverseNormalize(Matrix a, double normalizationMax, double normalizationMin , Matrix dataMax,Matrix dataMin) throws Exception {
double[][] res = new double[a.getMatrixRowNums()][a.getMatrixColNums()];
for (int i = 0; i < a.getMatrixColNums(); i++) {
//数据反归一化
if (dataMin.getValOfIdx(0,i) != 0 || dataMax.getValOfIdx(0,i) != 0) {
for (int j = 0; j < a.getMatrixRowNums(); j++) {
res[j][i] = dataMin.getValOfIdx(0,i) + (dataMax.getValOfIdx(0,i) - dataMin.getValOfIdx(0,i)) * (a.getValOfIdx(j,i) - normalizationMin) / (normalizationMax - normalizationMin);
}
}
}
return new Matrix(res);
}
/**
* 计算误差
* @param e
* @return
*/
private double computeE(Matrix e) throws Exception {
e = e.square();
return 0.5*e.sumAll();
}
/**
* 将BP模型序列化到本地
* @param bpModel
* @throws IOException
*/
public void serialize(BPModel bpModel,String path) throws IOException {
File file = new File(path);
System.out.println(file.getAbsolutePath());
ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream(file));
out.writeObject(bpModel);
out.close();
}
/**
* 将BP模型反序列化
* @return
* @throws IOException
* @throws ClassNotFoundException
*/
public BPModel deSerialization(String path) throws IOException, ClassNotFoundException {
File file = new File(path);
ObjectInputStream oin = new ObjectInputStream(new FileInputStream(file));
BPModel bpModel = (BPModel) oin.readObject(); // 强制转换到BPModel类型
oin.close();
return bpModel;
}
}
BPNeuralNetworkFactory代码
使用方式
思路就是创建BPNeuralNetworkFactory对象,并传入BPParameter对象,调用BPNeuralNetworkFactory的trainBP(BPParameter bpParameter, Matrix inputAndOutput)方法,返回一个BPModel对象,可以使用BPNeuralNetworkFactory的序列化方法,将其序列化到本地,或者将其放到缓存中,使用时直接从本地反序列化获取到BPModel对象,调用BPNeuralNetworkFactory的computeBP(BPModel bpModel,Matrix input)方法,即可获取计算值。
使用详情请看:https://github.com/ineedahouse/top-algorithm-set-doc/blob/master/doc/bpnn/BPNeuralNetwork.md
源码github地址
https://github.com/ineedahouse/top-algorithm-set
对您有帮助的话,请点个Star~谢谢
参考:基于BP神经网络的无约束优化方法研究及应用[D]. 赵逸翔.东北农业大学 2019
感谢点赞支持下哈